Reproductive biology: Progesterone's gateway into sperm

Nature (Impact Factor: 41.46). 03/2011; 471(7338):313-4. DOI: 10.1038/471313a
Source: PubMed


The hormone progesterone rapidly activates intracellular signalling in human sperm, regulating key aspects of their physiology. An ion channel unique to the sperm tail seems to relay progesterone's signal. See Letters p.382 & p.387

3 Reads
  • Source
    • "When human spermatozoa are exposed to progesterone stimulation , the CatSper channels are directly activated and the calcium stores can be indirectly motivated by progesterone (Koulen et al., 2008; Publicover et al., 2007; Strünker et al., 2011). The Ca 2 þ diffusion due to its concentration difference will induce the intracellular Ca 2 þ dynamic response in spermatozoa. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcium ion is a secondary messenger of mammalian spermatozoa. The dynamic change of its concentration plays a vital role in the process of sperm motility, capacitation, acrosome and fertilization. Progesterone released by the cumulus cells, as a potent stimulator of fertilization, can activate the calcium channels on the plasma membrane, which in turn triggers the dynamic change of intracellular calcium concentration. In this paper, a mathematical model of calcium dynamic response in mammalian spermatozoa induced by progesterone is proposed and numerical simulation of the dynamic model is conducted. The results show that the dynamic response of calcium concentration predicted by the model is in accordance with experimental evidence. The proposed dynamic model can be used to explain the phenomena observed in the experiments and predict new phenomena to be revealed by experimental investigations, which will provide the basis to quantitatively investigate the fluid mechanics and biochemistry for the sperm motility induced by progesterone.
    Journal of Theoretical Biology 03/2014; 351. DOI:10.1016/j.jtbi.2014.02.026 · 2.12 Impact Factor
  • Source
    • "There are, however, some areas where progress has been made. One that has received considerable attention, ignited by the creation and characterization of CatSper knockout mice, concerns the generation and regulation of calcium signals that control sperm motility, in particular hyperactivation (HA) (see below and Publicover et al., 2007; Costello et al., 2009; Lishko et al., 2011; Publicover and Barratt, 2011a, b; Strünker et al., 2011; Barratt and Publicover, 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: STUDY QUESTION: What is the prevalence of defects in the Ca 2+-signalling pathways mediating hyperactivation (calcium influx and store mobilization) among donors and sub-fertile patients and are they functionally significant, i.e. related to fertilization success at IVF?SUMMARY ANSWERThis study identifies, for the first time, the prevalence of Ca 2+ store defects in sperm from research donors, IVF and ICSI patients. It highlights the biological role and importance of Ca2+ signalling (Ca2+ store mobilization) for fertilization at IVF.WHAT IS KNOWN ALREADYSperm motility and hyperactivation (HA) are important for fertility, mice with sperm incapable of HA are sterile. Recently, there has been significant progress in our knowledge of the factors controlling these events, in particular the generation and regulation of calcium signals. Both pH-regulated membrane Ca2+ channels (CatSper) and Ca2+ stores (potentially activating store-operated Ca2+ channels) have been implicated in controlling HA.STUDY DESIGN, SIZE, AND DURATIONThis was a prospective study examining a panel of 68 donors and 181 sub-fertile patients attending the Assisted Conception Unit, Ninewells Hospital Dundee for IVF and ICSI. Twenty-five of the donors gave a second sample (∼4 weeks later) to confirm consistency/reliability of the recorded responses. Ca2+ signalling was manipulated using three agonists, NH4Cl (activates CatSper via pH), progesterone (direct activation of CatSper channels, potentially enhancing mobilization of stored Ca2+ by CICR) and 4-aminopyridine (4-AP) (effect on pH equivalent to NH4Cl and mobilizes stored Ca2+). The broad-spectrum phosphodiesterase inhibitor 3-isobutyl-1-methyxanthine (IBMX), a potent activator of HA was also used for comparison. For patient samples, an aliquot surplus to requirements for IVF/ICSI treatment was examined, allowing direct comparison of Ca2+ signalling and motility data with functional competence of the sperm.MATERIALS, SETTING, METHODS The donors and sub-fertile patients were screened for HA (using CASA) and changes in intracellular Ca2+ were assessed by loading with Fura-2 and measuring fluorescence using a plate reader (FluoStar). MAIN RESULTS AND THE ROLE OF CHANCE: The relative efficacy of the stimuli in inducing HA was 4-AP >> IBMX > progesterone. NH4Cl increased [Ca 2+]i similarly to 4-AP and progesterone but did not induce a significant increase in HA. Failure of samples to generate HA (no significant increase in response to stimulation with 4-AP) was seen in just 2% of research donors but occurred in 10% of IVF patients (P = 0.025). All donor samples generated a significant [Ca2+]i increase when stimulated with 4-AP but 3.3% of IVF and 28.6% of ICSI patients failed to respond. Amplitudes of HA and [Ca2+]i responses to 4-AP were correlated with fertilization rate at IVF (P= 0.029; P = 0.031, respectively). Progesterone reliably induced [Ca2+]i responses (97% of donors, 100% of IVF patients) but was significantly less effective than 4-AP in inducing HA. Twenty seven per cent of ICSI patients failed to generate a [Ca2+]i response to progesterone (P= 0.035). Progesterone-induced [Ca2+]i responses were correlated with fertilization rate at IVF (P= 0.037) but induction of HA was not. In donor samples examined on more than one occasion consistent responses for 4-AP-induced [Ca2+]i (R2 = 0.97) and HA (R2 = 0.579) were obtained. In summary, the data indicate that defects in Ca 2+ signalling leading to poor HA do occur and that ability to undergo Ca2+ -induced HA affects IVF fertilizing capacity. The data also confirm that release of stored Ca2+ is the crucial component of Ca2+ signals leading to HA and that Ca2+ store defects may therefore underlie HA failure. LIMITATIONS, REASONS FOR CAUTION: This is an in vitro study of sperm function. While the repeatability of the [Ca 2+]i and HA responses in samples from the same donor were confirmed, data for patients were from 1 assessment and thus the robustness of the failed responses in patients' needs to be established. The focus of this study was on using 4AP, which mobilizes stored Ca2+ and is a potent inducer of HA. The n values for other agonists, especially calcium assessments, are smaller. WIDER IMPLICATIONS OF THE FINDINGS: Previous studies have shown a significant relationship between basal levels of HA, calcium responses to progesterone and IVF fertilization rates. Here, we have systematically investigated the ability/failure of human sperm to generate Ca2+ signals and HA in response to targeted pharmacological challenge and, related defects in these responses to IVF success. [Ca2+]i signalling is fundamental for sperm motility and data from this study will lead to assessment of the nature of these defects using techniques such as single-cell imaging and patch clamping. STUDY FUNDING/COMPETING INTEREST(S): Resources from a Wellcome Trust Project Grant (#086470, Publicover and Barratt PI) primarily funded the study. The authors have no competing interests.
    Human Reproduction 02/2013; 28(4). DOI:10.1093/humrep/des467 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have demonstrated a female disadvantage in airway diseases, such as asthma and bronchiectasis. The basis for this sex disparity is unknown. We hypothesized that the female sex hormone, progesterone (P4), inhibits functions of the normal airway mucociliary apparatus. P4 receptor (PR) expression was evaluated in human lung and cultured primary human airway epithelial cells isolated from male and female lung transplant donors. PR expression was restricted to the proximal region of the cilia of airway epithelia, and was similar in men and women. Expression of isoform PR-B was more abundant than PR-A in cells from both sexes. Airway epithelial cell exposure to P4 decreased cilia beat frequency (CBF) by 42.3% (±7.2). Inhibition of CBF was prevented by coadministration of P4 with the active form of estrogen, 17β-estradiol, or the PR antagonist, mifepristone. P4 inhibition was time and dose dependent, with a significant decrease by 8 hours and maximal effect at 24 hours, accompanied by translocation of PR from the cilia to the nucleus. Inhibition of cilia beat was also prevented by treatment of cells with actinomycin D, suggesting that CBF inhibition is a transcriptionally mediated event. Together, these findings indicate that sex hormones influence the function of a key component of the mucociliary apparatus. These mechanisms may contribute to the sex disparity present in airway diseases and provide therapeutic targets for the treatment of these debilitating airway diseases.
    American Journal of Respiratory Cell and Molecular Biology 10/2011; 46(4):446-53. DOI:10.1165/rcmb.2011-0107OC · 3.99 Impact Factor
Show more