Article

Reproductive cycles in sheep.

Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road, Guelph, Ontario, Canada.
Animal reproduction science (Impact Factor: 1.56). 02/2011; 124(3-4):259-68. DOI: 10.1016/j.anireprosci.2011.02.024
Source: PubMed

ABSTRACT During the last three decades, there has been remarkable progress in many aspects of ovarian biology due to advances in real-time ultrasonography, which permits non-invasive, repeated monitoring of ovarian structures in conscious and non-anaesthetised animals. This review is primarily concerned with ovarian activity, as determined by transrectal ultrasonography, and measurements of circulating concentrations of gonadotrophins and ovarian steroids during reproductive cycles in sheep. The growth of antral follicles reaching ostensibly ovulatory sizes occurs in a wave-like pattern throughout the breeding season in both prolific and non-prolific breeds of sheep. There are typically 3 or 4 waves of follicle development during the interovulatory interval. Follicular wave emergence is primarily controlled by changes in circulating concentrations of follicle-stimulating hormone (FSH) but diminished ovarian responsiveness to gonadotrophic signals may result in reduced numbers of follicular waves. In cyclic ewes, the largest ovarian follicles acquire the ability to secrete oestradiol from the day of emergence with peak oestradiol secretion occurring about the time they reach maximum diameter. The high ovulation rate in some prolific breeds may be achieved by the ovulation of follicles from the last two waves of the interovulatory interval. Prolific ewes tend to produce more but smaller corpora lutea (CL) and have lower serum concentrations of progesterone during the luteal phase of the oestrous cycle as compared to less prolific genotypes. Lastly, recent studies of the endocrine influences on ovarian function have brought into question the existence of strong follicular dominance, as seen in cattle, and provided new insights into the effects of luteal progesterone on antral follicular development in ewes.

Full-text

Available from: Pawel Mieczyslaw Bartlewski, Mar 31, 2015
1 Bookmark
 · 
214 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Production and excretion of small ruminant lentiviruses (SRLVs) varies with the stage of the host reproductive cycle, suggesting hormonal involvement in this variation. Stress may also affect viral expression. To determine if hormones affect SRLV transcriptional activity, the expression of green fluorescent protein (GFP) driven by the promoters in the U3-cap region of the long terminal repeats (LTRs) of different strains of SRLV was assessed in cell culture. High concentrations of steroids (progesterone, cortisol and dehydroepiandrosterone) inhibited expression of GFP driven by SRLV promoters. This effect decreased in a dose-dependent manner with decreasing concentrations of steroids. In some strains, physiological concentrations of cortisol or dehydroepiandrosterone (DHEA) induced the expression of GFP above the baseline. There was strain variation in sensitivity to hormones, but this differed for different hormones. The presence of deletions and a 43 base repeat in the U3 region upstream of the TATA box of the LTR made strain EV1 less sensitive to DHEA. However, no clear tendencies or patterns were observed when comparing strains of different genotypes and/or subtypes, or those triggering different forms of disease.
    The Veterinary Journal 11/2014; 202(2). DOI:10.1016/j.tvjl.2014.08.003 · 2.17 Impact Factor
  • Source
    01/2015, Degree: PhD, Supervisor: Dr. Pawel Bartlewski
  • [Show abstract] [Hide abstract]
    ABSTRACT: Developmental exposure to BPA adversely affects reproductive function. In sheep, prenatal BPA treatment induces reproductive neuroendocrine defects, manifested as LH excess and dampened LH surge and perturbs early ovarian gene expression. In this study we hypothesized that prenatal BPA treatment will also disrupt ovarian follicular dynamics. Pregnant sheep were treated from days 30 to 90 of gestation with 3 different BPA doses (0.05, 0.5, or 5mg/kg BW/day). All female offspring were estrus synchronized and transrectal ultrasonography was performed daily for 22days to monitor ovarian follicular and corpora lutea dynamics. Blood samples were collected to assess hormonal preovulatory changes and luteal progesterone dynamics. Statistical analysis revealed that the time interval between the estradiol rise and the preovulatory LH surge was shortened in the BPA-treated females. None of the three BPA doses had an effect on corpora lutea, progestogenic cycles, and mean or duration of ovulatory and non-ovulatory follicles. However, differences in follicular count trajectories were evident in all three follicular size classes (2-3mm, 4-5mm, and≥6mm) of prenatal BPA-treated animals compared to controls. Number of follicular waves tended also to be more variable in the prenatal BPA-treated groups ranging from 2 to 5 follicular waves per cycle, while this was restricted to 3 to 4 waves in control females. These changes in ovarian follicular dynamics coupled with defects in time interval between estradiol rise and preovulatory LH release are likely to lead to subfertility in prenatal BPA-treated females.
    Toxicology and Applied Pharmacology 06/2014; DOI:10.1016/j.taap.2014.05.016 · 3.63 Impact Factor