Article

Strengthening the reporting of genetic risk prediction studies: the GRIPS statement

Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, Rotterdam 3000 CA, The Netherlands. .
Genome Medicine (Impact Factor: 4.94). 03/2011; 3(3):16. DOI: 10.1186/gm230
Source: PubMed

ABSTRACT The rapid and continuing progress in gene discovery for complex diseases is fueling interest in the potential application of genetic risk models for clinical and public health practice. The number of studies assessing the predictive ability is steadily increasing, but the quality and completeness of reporting varies. A multidisciplinary workshop sponsored by the Human Genome Epidemiology Network developed a checklist of 25 items recommended for strengthening the reporting of genetic risk prediction studies (the GRIPS statement), building on the principles established by prior reporting guidelines. These recommendations aim to enhance the transparency of study reporting, and thereby to improve the synthesis and application of information from multiple studies that might differ in design, conduct, or analysis. A detailed Explanation and Elaboration document is published at http://www.plosmedicine.org.

0 Followers
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective A growing body of evidence suggests that environmental pollutants, such as heavy metals, persistent organic pollutants and plasticizers play an important role in the development of chronic diseases. Most epidemiologic studies have examined environmental pollutants individually, but in real life, we are exposed to multi-pollutants and pollution mixtures, not single pollutants. Although multi-pollutant approaches have been recognized recently, challenges exist such as how to estimate the risk of adverse health responses from multi-pollutants. We propose an “Environmental Risk Score (ERS)” as a new simple tool to examine the risk of exposure to multi-pollutants in epidemiologic research. Methods and Results We examined 134 environmental pollutants in relation to serum lipids (total cholesterol, high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL) and triglycerides) using data from the National Health and Nutrition Examination Survey between 1999 and 2006. Using a two-stage approach, stage-1 for discovery (n = 10818) and stage-2 for validation (n = 4615), we identified 13 associated pollutants for total cholesterol, 9 for HDL, 5 for LDL and 27 for triglycerides with adjustment for sociodemographic factors, body mass index and serum nutrient levels. Using the regression coefficients (weights) from joint analyses of the combined data and exposure concentrations, ERS were computed as a weighted sum of the pollutant levels. We computed ERS for multiple lipid outcomes examined individually (single-phenotype approach) or together (multi-phenotype approach). Although the contributions of ERS to overall risk predictions for lipid outcomes were modest, we found relatively stronger associations between ERS and lipid outcomes than with individual pollutants. The magnitudes of the observed associations for ERS were comparable to or stronger than those for socio-demographic factors or BMI. Conclusions This study suggests ERS is a promising tool for characterizing disease risk from multi-pollutant exposures. This new approach supports the need for moving from a single-pollutant to a multi-pollutant framework.
    PLoS ONE 06/2014; 9(6):e98632. DOI:10.1371/journal.pone.0098632 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing numbers of research reporting guidelines are being published. These guidelines facilitate rigorous and complete reporting, and presentation of published studies. However, current reporting guidelines do not address issues related to costs of research methods. We propose to publish costs of research in order to increase transparency, efficiency, quality and ultimately reproducibility of scientific studies.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Prediction models are developed to aid healthcare providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision-making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed.Materials and methodsThe Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) initiative developed a set of recommendations for the reporting of studies developing, validating or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, healthcare professionals and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors.ResultsThe resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document.Conclusions To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org).
    European Journal of Clinical Investigation 01/2015; 32(2). DOI:10.1111/eci.12376 · 2.83 Impact Factor

Full-text (3 Sources)

Download
71 Downloads
Available from
May 28, 2014