Article

Gene networks associated with conditional fear in mice identified using a systems genetics approach.

Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
BMC Systems Biology (Impact Factor: 2.98). 03/2011; 5:43. DOI: 10.1186/1752-0509-5-43
Source: PubMed

ABSTRACT Our understanding of the genetic basis of learning and memory remains shrouded in mystery. To explore the genetic networks governing the biology of conditional fear, we used a systems genetics approach to analyze a hybrid mouse diversity panel (HMDP) with high mapping resolution.
A total of 27 behavioral quantitative trait loci were mapped with a false discovery rate of 5%. By integrating fear phenotypes, transcript profiling data from hippocampus and striatum and also genotype information, two gene co-expression networks correlated with context-dependent immobility were identified. We prioritized the key markers and genes in these pathways using intramodular connectivity measures and structural equation modeling. Highly connected genes in the context fear modules included Psmd6, Ube2a and Usp33, suggesting an important role for ubiquitination in learning and memory. In addition, we surveyed the architecture of brain transcript regulation and demonstrated preservation of gene co-expression modules in hippocampus and striatum, while also highlighting important differences. Rps15a, Kif3a, Stard7, 6330503K22RIK, and Plvap were among the individual genes whose transcript abundance were strongly associated with fear phenotypes.
Application of our multi-faceted mapping strategy permits an increasingly detailed characterization of the genetic networks underlying behavior.

0 Bookmarks
 · 
155 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND:Salmonella enterica serovar Typhimurium is a gram-negative bacterium that can colonise the gut of humans and several species of food producing farm animals to cause enteric or septicaemic salmonellosis. While many studies have looked into the host genetic response to Salmonella infection, relatively few have used correlation of shedding traits with gene expression patterns to identify genes whose variable expression among different individuals may be associated with differences in Salmonella clearance and resistance. Here, we aimed to identify porcine genes and gene co-expression networks that differentiate distinct responses to Salmonella challenge with respect to faecal Salmonella shedding.RESULTS:Peripheral blood transcriptome profiles from 16 pigs belonging to extremes of the trait of faecal Salmonella shedding counts recorded up to 20 days post-inoculation (low shedders (LS), n = 8; persistent shedders (PS), n = 8) were generated using RNA-sequencing from samples collected just before (day 0) and two days after (day 2) Salmonella inoculation. Weighted gene co-expression network analysis (WGCNA) of day 0 samples identified four modules of co-expressed genes significantly correlated with Salmonella shedding counts upon future challenge. Two of those modules consisted largely of innate immunity related genes, many of which were significantly up-regulated at day 2 post-inoculation. The connectivity at both days and the mean gene-wise expression levels at day 0 of the genes within these modules were higher in networks constructed using LS samples alone than those using PS alone. Genes within these modules include those previously reported to be involved in Salmonella resistance such as SLC11A1 (formerly NRAMP1), TLR4, CD14 and CCR1 and those for which an association with Salmonella is novel, for example, SIGLEC5, IGSF6 and TNFSF13B.CONCLUSIONS:Our analysis integrates gene co-expression network analysis, gene-trait correlations and differential expression to provide new candidate regulators of Salmonella shedding in pigs. The comparatively higher expression (also confirmed in an independent dataset) and the significantly higher connectivity of genes within the Salmonella shedding associated modules in LS compared to PS even before Salmonella challenge may be factors that contribute to the decreased faecal Salmonella shedding observed in LS following challenge.
    BMC Genomics 01/2014; 15(1):452. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis, the underlying cause of cardiovascular disease, results from both genetic and environmental factors.
    BMC Medical Genomics 08/2014; 7(1):51. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA sequencing can simultaneously identify exonic polymorphisms and quantitate gene expression. Here we report RNA sequencing of developing maize kernels from 368 inbred lines producing 25.8 billion reads and 3.6 million single-nucleotide polymorphisms. Both the MaizeSNP50 BeadChip and the Sequenom MassArray iPLEX platforms confirm a subset of high-quality SNPs. Of these SNPs, we have mapped 931,484 to gene regions with a mean density of 40.3 SNPs per gene. The genome-wide association study identifies 16,408 expression quantitative trait loci. A two-step approach defines 95.1% of the eQTLs to a 10-kb region, and 67.7% of them include a single gene. The establishment of relationships between eQTLs and their targets reveals a large-scale gene regulatory network, which include the regulation of 31 zein and 16 key kernel genes. These results contribute to our understanding of kernel development and to the improvement of maize yield and nutritional quality.
    Nature Communications 12/2013; 4:2832. · 10.74 Impact Factor

Full-text (3 Sources)

Download
44 Downloads
Available from
May 20, 2014