Article

Multiple facets of Arabidopsis seedling development require indole-3-butyric acid-derived auxin.

Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA.
The Plant Cell (Impact Factor: 9.58). 03/2011; 23(3):984-99. DOI: 10.1105/tpc.111.083071
Source: PubMed

ABSTRACT Levels of auxin, which regulates both cell division and cell elongation in plant development, are controlled by synthesis, inactivation, transport, and the use of storage forms. However, the specific contributions of various inputs to the active auxin pool are not well understood. One auxin precursor is indole-3-butyric acid (IBA), which undergoes peroxisomal β-oxidation to release free indole-3-acetic acid (IAA). We identified ENOYL-COA HYDRATASE2 (ECH2) as an enzyme required for IBA response. Combining the ech2 mutant with previously identified iba response mutants resulted in enhanced IBA resistance, diverse auxin-related developmental defects, decreased auxin-responsive reporter activity in both untreated and auxin-treated seedlings, and decreased free IAA levels. The decreased auxin levels and responsiveness, along with the associated developmental defects, uncover previously unappreciated roles for IBA-derived IAA during seedling development, establish IBA as an important auxin precursor, and suggest that IBA-to-IAA conversion contributes to the positive feedback that maintains root auxin levels.

0 Followers
 · 
146 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Long before its chemical identity was known, the phytohormone auxin was postulated to regulate plant growth. In the late 1800s, Sachs hypothesized that plant growth regulators, present in small amounts, move differentially throughout the plant to regulate growth. Concurrently, Charles Darwin and Francis Darwin were discovering that light and gravity were perceived by the tips of shoots and roots and that the stimulus was transmitted to other tissues, which underwent a growth response. These ideas were improved upon by Boysen-Jensen and Paál and were later developed into the Cholodny-Went hypothesis that tropisms were caused by the asymmetric distribution of a growth-promoting substance. These observations led to many efforts to identify this elusive growth-promoting substance, which we now know as auxin. In this review of auxin field advances over the past century, we start with a seminal paper by Kenneth Thimann and Charles Schneider titled "The relative activities of different auxins" from the American Journal of Botany, in which they compare the growth altering properties of several auxinic compounds. From this point, we explore the modern molecular understanding of auxin-including its biosynthesis, transport, and perception. Finally, we end this review with a discussion of outstanding questions and future directions in the auxin field. Over the past 100 yr, much of our progress in understanding auxin biology has relied on the steady and collective advance of the field of auxin researchers; we expect that the next 100 yr of auxin research will likewise make many exciting advances. © 2015 Botanical Society of America, Inc.
    American Journal of Botany 02/2015; 102(2):180-96. DOI:10.3732/ajb.1400285 · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the exploration of the soil by plant roots, uptake of water and nutrients can be greatly fostered by a regular spacing of lateral roots (LRs). In the Arabidopsis root, a regular branching pattern depends on oscillatory gene activity to create prebranch sites, patches of cells competent to form LRs. Thus far, the molecular components regulating the oscillations still remain unclear. Here, we show that a local auxin source in the root cap, derived from the auxin precursor indole-3-butyric acid (IBA), modulates the oscillation amplitude, which in turn determines whether a prebranch site is created or not. Moreover, transcriptome profiling identified novel and IBA-regulated components of root patterning, such as the MEMBRANE-ASSOCIATED KINASE REGULATOR4 (MAKR4) that converts the prebranch sites into a regular spacing of lateral organs. Thus, the spatiotemporal patterning of roots is fine-tuned by the root cap-specific conversion pathway of IBA to auxin and the subsequent induction of MAKR4. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current biology: CB 05/2015; DOI:10.1016/j.cub.2015.03.046 · 9.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phytohormone auxin regulates nearly all aspects of plant growth and development. Tremendous achievements have been made in elucidating the tryptophan (Trp)-dependent auxin biosynthetic pathway; however, the genetic evidence, key components, and functions of the Trp-independent pathway remain elusive. Here we report that the Arabidopsis indole synthase mutant is defective in the long-anticipated Trp-independent auxin biosynthetic pathway and that auxin synthesized through this spatially and temporally regulated pathway contributes significantly to the establishment of the apical-basal axis, which profoundly affects the early embryogenesis in Arabidopsis. These discoveries pave an avenue for elucidating the Trp-independent auxin biosynthetic pathway and its functions in regulating plant growth and development.
    Proceedings of the National Academy of Sciences 03/2015; 112(15). DOI:10.1073/pnas.1503998112 · 9.81 Impact Factor