Article

Calpain-6, a microtubule-stabilizing protein, regulates Rac1 activity and cell motility through interaction with GEF-H1.

Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Journal of Cell Science (Impact Factor: 5.88). 03/2011; 124(Pt 8):1214-23. DOI:10.1242/jcs.072561
Source: PubMed

ABSTRACT Crosstalk between microtubules and actin filaments is crucial for various cellular functions, including cell migration, spreading and cytokinesis. The Rac1 GTPase plays a key role in such crosstalk at the leading edge of migrating cells in order to promote lamellipodial formation. However, the mechanism underlying the link between microtubules and Rac1 activation remains unclear. Here, we show that calpain-6 (CAPN6), a non-proteolytic calpain with microtubule-binding and -stabilizing activity, might participate in this crosstalk. Small interfering RNA (siRNA)-induced knockdown of Capn6 in NIH 3T3 cells resulted in Rac1 activation, which promoted cell migration, spreading and lamellipodial protrusion. This increase in Rac1 activity was abolished by knockdown of the Rho guanine nucleotide exchange factor GEF-H1 (officially known as Arhgef2). CAPN6 and GEF-H1 colocalized with microtubules and also interacted with each other through specific domains. Upon knockdown of Capn6, GEF-H1 was shown to translocate from microtubules to the lamellipodial region and to interact with Rac1. By contrast, RhoA activity was decreased upon knockdown of Capn6, although low levels of active RhoA or the presence of RhoA molecules appeared to be required for the Capn6-knockdown-induced Rac1 activation. We suggest that CAPN6 acts as a potential regulator of Rac1 activity, through a mechanism involving interaction with GEF-H1, to control lamellipodial formation and cell motility.

0 0
 · 
0 Bookmarks
 · 
106 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Calpains are Ca(2+)-dependent modulator Cys proteases that have a variety of functions in almost all eukaryotes. There are more than 10 well-conserved mammalian calpains, among which eutherian calpain-6 (CAPN6) is unique in that it has amino acid substitutions at the active-site Cys residue (to Lys in humans), strongly suggesting a loss of proteolytic activity. CAPN6 is expressed predominantly in embryonic muscles, placenta, and several cultured cell lines. We previously reported that CAPN6 is involved in regulating microtubule dynamics and actin reorganization in cultured cells. The physiological functions of CAPN6, however, are still unclear. Here, to elucidate CAPN6's in vivo roles, we generated Capn6-deficient mice, in which a lacZ expression cassette was integrated into the Capn6 gene. These Capn6-deficient mouse embryos expressed lacZ predominantly in skeletal muscles, as well as in cartilage and the heart. Histological and biochemical analyses showed that the CAPN6 deficiency promoted the development of embryonic skeletal muscle. In primary cultured skeletal muscle cells that were induced to differentiate into myotubes, Capn6 expression was detected in skeletal myocytes, and Capn6-deficient cultures showed increased differentiation. Furthermore, we found that CAPN6 was expressed in the regenerating skeletal muscles of adult mice after cardiotoxin-induced degeneration. In this experimental system, Capn6-deficient mice exhibited more advanced skeletal-muscle regeneration than heterozygotes or wild-type mice at the same time point. These results collectively showed that a loss of CAPN6 promotes skeletal muscle differentiation during both development and regeneration, suggesting a novel physiological function of CAPN6 as a suppressor of skeletal muscle differentiation.
    PLoS Genetics 08/2013; 9(8):e1003668. · 8.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Background: Dynamic alterations in cell shape, migration and adhesion play a central role in tissue morphogenesis during embryonic development and congenital disease. The mesenchymal-to-epithelial transition that occurs during vertebrate somitogenesis is required for proper patterning of the axial musculoskeletal system. Somitic MET is initiated in the presomitic mesoderm by PARAXIS-dependent changes in cell adhesion, cell polarity and the composition of the extracellular matrix. However, the target genes downstream of the transcription factor PARAXIS remain poorly described. Results: A genome-wide comparison of gene expression in the anterior presomitic mesoderm and newly formed somites of Paraxis(-/-) embryos resulted in a set of deregulated genes enriched for factors associated with extracellular matrix and cytoskeletal organization and cell-cell and cell-ECM adhesion. The greatest change in expression was seen in fibroblast activation protein alpha (Fap), encoding a dipeptidyl peptidase capable of increasing fibronectin and collagen fiber organization in extracellular matrix. Further, downstream genes in the Wnt and Notch signaling pathways were downregulated, predicting that PARAXIS participates in positive feedback loops in both pathways. Conclusions: These data demonstrate that PARAXIS initiates and stabilizes somite epithelialization by integrating signals from multiple pathways to control the reorganization of the ECM, cytoskeleton and adhesion junctions during MET. Developmental Dynamics, 2013. © 2013 Wiley Periodicals, Inc.
    Developmental Dynamics 08/2013; · 2.59 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The molecular pathogenic mechanisms of prion diseases are far from clear. Genomic analyses have revealed genetic biomarkers potentially involved in prion neuropathology in naturally scrapie-infected sheep, a good animal model of infectious prionopathies. However, these biomarkers must be validated in independent studies at different stages of the disease. The gene and protein expression profiles and protein distribution of six potential genetic biomarkers (i.e., CAPN6, COL1A2, COL3A1, GALA1, MT2A and MTNR1B) are presented here for both the early and terminal stages of scrapie in five different brain regions. Gene transcription changes were confirmed in the medulla oblongata, and the expression profiles were generally similar in other central nervous system regions. The changes were more substantial in clinical animals compared to preclinical animals. The expression of the CAPN6 protein increased in the spinal cord and cerebellum of the clinical and preclinical brains. The distribution of the GALA1 was identified in glial cells from the cerebellum of scrapie-infected animals, GALA1 protein expression was increased in clinical animals in the majority of regions, and the increase of MT2A was in agreement with previous reports. The downregulation of MTNR1B was especially marked in the Purkinje cells. Finally, although collagen genes were downregulated the protein immunostaining did not reveal significant changes between the scrapie-infected and control animals. In conclusion, this study of gene transcription and protein expression and distribution confirm CAPN6, GALA1, MTNR1B and MT2A as potential targets for further prion disease research.
    Veterinary Research 03/2013; 44(1):14. · 3.43 Impact Factor