Uridine Function in the Central Nervous System

Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology,Semmelweis University and the Hungarian Academy of Sciences, H-1094 Budapest, Hungary.
Current topics in medicinal chemistry (Impact Factor: 3.4). 03/2011; 11(8):1058-67. DOI: 10.2174/156802611795347618
Source: PubMed


In the adult nervous system, the major source of nucleotide synthesis is the salvage pathway. Uridine is the major form of pyrimidine nucleosides taken up by the brain. Uridine is phosphorylated to nucleotides, which are used for DNA and RNA synthesis as well as for the synthesis of membrane constituents and glycosylation. Uridine nucleotides and UDP-sugars may be released from neuronal and glial cells. Plasmamembrane receptors of 7 transmembrane domains have been identified that recognize UTP, UDP, and UDP-sugar conjugates. These receptors are called P2Y2 and P2Y4, P2Y6, and P2Y14 receptors, respectively. In addition, binding sites for uridine itself have also been suggested. Furthermore, uridine administration had sleep-promoting and anti-epileptic actions, improved memory function and affected neuronal plasticity. Information only starts to be accumulating on potential mechanisms of these uridine actions. Some data are available on the topographical distribution of pyrimidine receptors and binding sites in the brain, however, their exact role in neuronal functions is not established yet. There is also a scarcity of data regarding the brain distribution of other components of the pyrimidine metabolism although site specific functions exerted by their receptors might require different metabolic support. Despite the gaps in our knowledge on the neuronal functions of pyrimidine nucleosides, their therapeutic utilization is appealing. They have been suggested for the treatment of epileptic and neurodegenerative diseases as neuroprotective agents. In addition, the development of traditional drugs acting specifically on pyrimidine receptor subtypes is also promising as a new direction to treat neurological disorders.

Download full-text


Available from: Arpád Dobolyi,
    • "Notably, insulin resistance in humans correlates with increased circulating uridine concentrations (Dudzinska et al., 2013; Hamada et al., 2007). While the predominant source of uridine in lean subjects is the liver (Dobolyi et al., 2011), future studies will have to unravel the mechanisms and tissues responsible for increased uridine synthesis in metabolic disorders. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of orexigenic AgRP-expressing neurons in the arcuate nucleus of the hypothalamus potently promotes feeding, thus defining new regulators of AgRP neuron activity could uncover potential novel targets for obesity treatment. Here, we demonstrate that AgRP neurons express the purinergic receptor 6 (P2Y6), which is activated by uridine-diphosphate (UDP). In vivo, UDP induces ERK phosphorylation and cFos expression in AgRP neurons and promotes action potential firing of these neurons in brain slice recordings. Consequently, central application of UDP promotes feeding, and this response is abrogated upon pharmacologic or genetic inhibition of P2Y6 as well as upon pharmacogenetic inhibition of AgRP neuron activity. In obese animals, hypothalamic UDP content is elevated as a consequence of increased circulating uridine concentrations. Collectively, these experiments reveal a potential regulatory pathway in obesity, where peripheral uridine increases hypothalamic UDP concentrations, which in turn can promote feeding via PY6-dependent activation of AgRP neurons.
    Cell 09/2015; 162(6):1404-1417. DOI:10.1016/j.cell.2015.08.032 · 32.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The brain relies on the salvage of preformed purine and pyrimidine rings, mainly in the form of nucleosides, to maintain its nucleotide pool in the proper qualitative and quantitative balance. The transport of nucleosides from blood into neurons and glia is considered to be an essential prerequisite to enter their metabolic utilization in the brain. Recent lines of evidence have also suggested that local extracellular nucleoside triphosphate (NTP) degradation may contribute to brain nucleosides. Plasma membrane-located ectonucleotidases, with their active sites oriented toward the extracellular space, catalyze the successive hydrolysis of NTPs to their respective nucleosides. Apart from the well-established modulation of ATP, ADP, adenosine (the purinergic agonists), UTP, and UDP (the pyrimidinergic agonists) availability at their respective receptors, ectonucleotidases may also serve the local reutilization of nucleosides in the brain. After their production in the extracellular space by the ectonucleotidase system, nucleosides are transported into neurons and glia and converted back to NTPs via a set of purine and pyrimidine salvage enzymes. Finally, nucleotides are transported into brain cell vescicles or granules and released back into the extracellular space. The key teaching concepts to be included in a two-to three-lecture block on the molecular mechanisms of the local nucleoside recycling process, based on a cross talk between the brain extracellular space and cytosol, are discussed in this article.
    AJP Advances in Physiology Education 12/2011; 35(4):342-6. DOI:10.1152/advan.00068.2011 · 0.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular nucleotides exert their actions via two subfamilies of purinoceptors: P2X and P2Y. Eight mammalian P2Y receptor subtypes (P2Y(1,2,4,6,11,12,13,14)) have been identified. In this work, the localization of P2Y(6) was studied in rat retina using double immunofluorescence labeling and confocal scanning microscopy. Immunostaining for P2Y(6) was strong in the outer plexiform layer and was diffusely distributed throughout the full thickness of the inner plexiform layer. In addition, P2Y(6) immunoreactivity was clearly observed in many cells in the inner nuclear layer and the ganglion cell layer. In the outer retina photoreceptor terminals, labeled by VGluT1, and horizontal cells, labeled by calbindin, were P2Y(6)-positive. However, no P2Y(6) immunostaining was detected in bipolar cells, labeled by homeobox protein Chx10. In the inner retina P2Y(6) was localized to most of GABAergic amacrine cells, including dopaminergic and cholinergic ones, stained by tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) respectively. Some of glycinergic amacrine cells, but not glycinergic AII amacrine cells, were also labeled by P2Y(6). Moreover, P2Y(6) immunoreactivity was seen in almost all ganglion cells, labeled by Brn3a. In Müller glial cells, stained by cellular retinaldehyde binding protein (CRALBP), however, no P2Y(6) expression was found in both somata and processes. We speculate that P2Y(6) may be involved in retinal information processing in different ways, probably by regulating the release of transmitters and/or modulating the radial flow of visual signals and lateral interaction mediated by horizontal and amacrine cells.
    Neuroscience 06/2012; 220:62-9. DOI:10.1016/j.neuroscience.2012.06.032 · 3.36 Impact Factor
Show more