Article

Impact of chromatin structure on sequence variability in the human genome.

Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA.
Nature Structural & Molecular Biology (Impact Factor: 11.63). 03/2011; 18(4):510-5. DOI: 10.1038/nsmb.2012
Source: PubMed

ABSTRACT DNA sequence variations in individual genomes give rise to different phenotypes within the same species. One mechanism in this process is the alteration of chromatin structure due to sequence variation that influences gene regulation. We composed a high-confidence collection of human single-nucleotide polymorphisms and indels based on analysis of publicly available sequencing data and investigated whether the DNA loci associated with stable nucleosome positions are protected against mutations. We addressed how the sequence variation reflects the occupancy profiles of nucleosomes bearing different epigenetic modifications on genome scale. We found that indels are depleted around nucleosome positions of all considered types, whereas single-nucleotide polymorphisms are enriched around the positions of bulk nucleosomes but depleted around the positions of epigenetically modified nucleosomes. These findings indicate an increased level of conservation for the sequences associated with epigenetically modified nucleosomes, highlighting complex organization of the human chromatin.

0 Bookmarks
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Indels (insertions and deletions) are the second most common form of genetic variations in the eukaryotic genomes and are responsible for a multitude of genetic diseases. Despite its significance, detailed molecular mechanisms for indel generation are still unclear. Here we examined 2,656,597 small human and mouse germline indels, 16,742 human somatic indels, 10,599 large human insertions, and 5,822 large chimpanzee insertions and systematically analyzed the patterns of DNA cleavage intensities in the 200 base pair regions surrounding these indels. Our results show that DNA cleavage intensities close to the start and end points of indels are significantly lower than other regions, for both small human germline and somatic indels and also for mouse small indels. Compared to small indels, the patterns of DNA cleavage intensity around large indels are more complex, and there are two low intensity regions near each end of the indels that are approximately 13 bp apart from each other. Detailed analyses of a subset of indels show that there is slight difference in cleavage intensity distribution between insertion indels and deletion indels that could be contributed by their respective enrichment of different repetitive elements. These results will provide new insight into indel generation mechanisms.
    Scientific Reports 02/2015; 5:8333. DOI:10.1038/srep08333 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Histone variant Htz1 substitution for H2A plays important roles in diverse DNA transactions. Histone chaperones Chz1 and Nap1 (nucleosome assembly protein 1) are important for the deposition Htz1 into nucleosomes. In literatures, it was suggested that Chz1 is a Htz1-H2B-specific chaperone, and it is relatively unstructured in solution but it becomes structured in complex with the Htz1-H2B histone dimer. Nap1 (nucleosome assembly protein 1) can bind (H3-H4)2 tetramers, H2A-H2B dimers and Htz1-H2B dimers. Nap1 can bind H2A-H2B dimer in the cytoplasm and shuttles the dimer into the nucleus. Moreover, Nap1 functions in nucleosome assembly by competitively interacting with non-nucleosomal histone-DNA. However, the exact roles of these chaperones in assembling Htz1-containing nucleosome remain largely unknown. In this paper, we revealed that Chz1 does not show a physical interaction with chromatin. In contrast, Nap1 binds exactly at the genomic DNA that contains Htz1. Nap1 and Htz1 show a preferential interaction with AG-rich DNA sequences. Deletion of chz1 results in a significantly decreased binding of Htz1 in chromatin, whereas deletion of nap1 dramatically increases the association of Htz1 with chromatin. Furthermore, genome-wide nucleosome-mapping analysis revealed that nucleosome occupancy for Htz1p-bound genes decreases upon deleting htz1 or chz1, suggesting that Htz1 is required for nucleosome structure at the specific genome loci. All together, these results define the distinct roles for histone chaperones Chz1 and Nap1 to regulate Htz1 incorporation into chromatin.
    Bioscience Reports 09/2014; 34(5). DOI:10.1042/BSR20140092 · 2.85 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The regions surrounding transcription start sites (TSSs) of genes play a critical role in the regulation of gene expression. At the same time, current evidence indicates that these regions are particularly stressed by transcription-related mutagenic phenomena. In this work we performed a genome-wide analysis of the distribution of single nucleotide polymorphisms (SNPs) inside the 10 kb region flanking human TSSs by dividing SNPs into four classes according to their frequency (rare, two intermediate classes, and common). We found that, in this 10 kb region, the distribution of variants depends on their frequency and on their localization relative to the TSS. We found that the distribution of variants is generally different for TSSs located inside or outside of CpG islands. We found a significant relationship between the distribution of rare variants and nucleosome occupancy scores. Furthermore, our analysis suggests that evolutionary (purifying selection) and nonevolutionary (biased gene conversion) forces both play a role in determining the relative SNP frequency around TSSs. Finally, we analyzed the potential pathogenicity of each class of variant using the Combined Annotation Dependent Depletion score. In conclusion, this study provides a novel and detailed view of the distribution of genomic variants around TSSs, providing insight into the forces that instigate and maintain variability in such critical regions.
    PLoS ONE 12/2014; 9(12):e114432. DOI:10.1371/journal.pone.0114432 · 3.53 Impact Factor

Full-text (2 Sources)

Download
48 Downloads
Available from
May 28, 2014