Article

Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods.

Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
The EMBO Journal (Impact Factor: 9.82). 03/2011; 30(8):1520-35. DOI: 10.1038/emboj.2011.63
Source: PubMed

ABSTRACT Centrosomes in animal cells are dynamic organelles with a proteinaceous matrix of pericentriolar material assembled around a pair of centrioles. They organize the microtubule cytoskeleton and the mitotic spindle apparatus. Mature centrioles are essential for biogenesis of primary cilia that mediate key signalling events. Despite recent advances, the molecular basis for the plethora of processes coordinated by centrosomes is not fully understood. We have combined protein identification and localization, using PCP-SILAC mass spectrometry, BAC transgeneOmics, and antibodies to define the constituents of human centrosomes. From a background of non-specific proteins, we distinguished 126 known and 40 candidate centrosomal proteins, of which 22 were confirmed as novel components. An antibody screen covering 4000 genes revealed an additional 113 candidates. We illustrate the power of our methods by identifying a novel set of five proteins preferentially associated with mother or daughter centrioles, comprising genes implicated in cell polarity. Pulsed labelling demonstrates a remarkable variation in the stability of centrosomal protein complexes. These spatiotemporal proteomics data provide leads to the further functional characterization of centrosomal proteins.

0 Bookmarks
 · 
131 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microtubules are dynamic polymers of tubulin dimers that undergo continuous assembly and disassembly. A mounting number of microtubule-associated proteins (MAPs) regulate the dynamic behavior of microtubules and hence the assembly and disassembly of disparate microtubule structures within the cell. Despite recent advances in identification and functional characterization of MAPs, a substantial number of microtubule accessory factors have not been functionally annotated. Here, using profile-to-profile comparisons and structure modeling, we show that the yeast outer kinetochore components NDC80 and NUF2 constitute early evolutionary predecessors of a novel protein family in mammals comprising, besides NDC80/HEC1 and NUF2, three Intraflagellar Transport (IFT) complex B subunits (IFT81, IFT57, CLUAP1) as well as six proteins with poorly defined function (FAM98A-C, CCDC22, CCDC93 and C14orf166). We show that these proteins consist of a divergent N-terminal calponin homology (CH)-like domain adjoined to an array of C-terminal heptad repeats predicted to form a coiled-coil arrangement. We have named the divergent CH-like domain NN-CH after the founding members NDC80 and NUF2.
    Bioinformatics 11/2013; · 5.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Experimental spatial proteomics, i.e the high-throughput assignment of proteins to sub-cellular compartments based on quantitative proteomics data, promises to shed new light on many biological processes given adequate computational tools. Here we present pRoloc, a complete infrastructure to support and guide the sound analysis of quantitative mass-spectrometry based spatial proteomics data. It provides functionality for unsupervised and supervised machine learning for data exploration and protein classification and novelty detection to identify new putative sub-cellular clusters. The software builds upon existing infrastructure for data management and data processing. pRoloc is implemented in the R language and available under an open-source license from the Bioconductor project (http://www.bioconductor.org/). A vignette with a complete tutorial describing data import/export and analysis is included in the package. Test data is available in the companion package pRolocdata. lg390@cam.ac.uk.
    Bioinformatics 01/2014; · 5.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescence microscopy has become an essential tool for biological research because it can be minimally invasive, acquire data rapidly, and target molecules of interest with specific labeling strategies. However, the diffraction-limited spatial resolution, which is classically limited to about 200 nm in the lateral direction and about 500 nm in the axial direction, hampers its application to identify delicate details of subcellular structure. Extensive efforts have been made to break diffraction limit for obtaining high-resolution imaging of a biological specimen. Various methods capable of obtaining super-resolution images with a resolution of tens of nanometers are currently available. These super-resolution techniques can be generally divided into two primary classes: (1) patterned illumination-based super-resolution imaging, which employs spatially and temporally modulated illumination light to reconstruct sub-diffraction structures; (2) single-molecule localization-based super-resolution imaging, which localizes the profile center of each individual fluorophore at sub-diffraction precision. These super-resolution techniques have been utilized in different biological fields and provide novel insights into several new aspects of life science. Given unique technical merits and commercial availability of super-resolution fluorescence microscope, increasing applications of this powerful technique in life science can be expected.
    Journal of Genetics and Genomics 01/2013; · 2.08 Impact Factor