Article

Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods.

Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
The EMBO Journal (Impact Factor: 9.82). 03/2011; 30(8):1520-35. DOI: 10.1038/emboj.2011.63
Source: PubMed

ABSTRACT Centrosomes in animal cells are dynamic organelles with a proteinaceous matrix of pericentriolar material assembled around a pair of centrioles. They organize the microtubule cytoskeleton and the mitotic spindle apparatus. Mature centrioles are essential for biogenesis of primary cilia that mediate key signalling events. Despite recent advances, the molecular basis for the plethora of processes coordinated by centrosomes is not fully understood. We have combined protein identification and localization, using PCP-SILAC mass spectrometry, BAC transgeneOmics, and antibodies to define the constituents of human centrosomes. From a background of non-specific proteins, we distinguished 126 known and 40 candidate centrosomal proteins, of which 22 were confirmed as novel components. An antibody screen covering 4000 genes revealed an additional 113 candidates. We illustrate the power of our methods by identifying a novel set of five proteins preferentially associated with mother or daughter centrioles, comprising genes implicated in cell polarity. Pulsed labelling demonstrates a remarkable variation in the stability of centrosomal protein complexes. These spatiotemporal proteomics data provide leads to the further functional characterization of centrosomal proteins.

0 Bookmarks
 · 
151 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New generation technologies in cell and molecular biology generate large amounts of data hard to exploit for individual proteins. This is particularly true for ciliary and centrosomal research. Cildb is a multi-species knowledgebase gathering high throughput studies, which allows advanced searches to identify proteins involved in centrosome, basal body or cilia biogenesis, composition and function. Combined to localization of genetic diseases on human chromosomes given by OMIM links, candidate ciliopathy proteins can be compiled through Cildb searches. Othology between recent versions of the whole proteomes was computed using Inparanoid and ciliary high throughput studies were remapped on these recent versions. Due to constant evolution of the ciliary and centrosomal field, Cildb has been recently upgraded twice, with new species whole proteomes and new ciliary studies, and the latter version displays a novel BioMart interface, much more intuitive than the previous ones. This already popular database is designed now for easier use and is up to date in regard to high throughput ciliary studies.
    Cilia. 01/2014; 3:9.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coiled‐coil alpha‐helical rod protein 1 (CCHCR1) is suggested as a candidate biomarker for psoriasis for more than a decade but its function remains poorly understood because of the inconsistent findings in the literature. CCHCR1 protein is suggested to be localized in the cytoplasm, nucleus, mitochondria, or centrosome and to regulate various cellular functions, including steroidogenesis, proliferation, differentiation, and cytoskeleton organization. In this study, we attempted to find a consensus between these findings by identifying the interaction partners of CCHCR1 using co-immunoprecipiation with a stable cell line expressing EGFP-tagged CCHCR1. Out of more than 100 co-immunoprecipitants identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), the enhancer of mRNA-decapping protein 4 (EDC4), which is a processing body (P-body) component, was particularly found to be the major interacting partner of CCHCR1. Confocal imaging confirmed the localization of CCHCR1 in P-bodies and its N-terminus is required for this subcellular localization, suggesting that CCHCR1 is a novel P-body component. As P-bodies are the site for mRNA metabolism, our findings provide a molecular basis for the function of CCHCR1, any disruption of which may affect the transcriptome of the cell, and causing abnormal cell functions.
    Experimental Cell Research. 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal-fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions.
    PLoS Computational Biology 06/2014; 10(6):e1003657. · 4.87 Impact Factor

Full-text (2 Sources)

Download
23 Downloads
Available from
May 19, 2014