Article

A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial.

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
The Journal of Infectious Diseases (Impact Factor: 5.78). 03/2011; 203(10):1396-404. DOI: 10.1093/infdis/jir054
Source: PubMed

ABSTRACT West Nile virus (WNV) is a flavivirus that causes meningitis and encephalitis. There are no licensed vaccines to prevent WNV in humans. The safety and immunogenicity of a first-generation WNV DNA vaccine was demonstrated in a clinical trial and a similar DNA vaccine has been licensed for use in horses.
A DNA vaccine encoding the protein premembrane and the E glycoproteins of the NY99 strain of WNV under the transcriptional control of the CMV/R promoter was evaluated in an open-label study in 30 healthy adults. Half of the subjects were age 18-50 years and half were age 51-65 years. Immune responses were assessed by enzyme-linked immunosorbent assay, neutralization assays, intracellular cytokine staining, and ELISpot.
The 3-dose vaccine regimen was safe and well tolerated. Vaccine-induced T cell and neutralizing antibody responses were detected in the majority of subjects. The antibody responses seen in the older age group were of similar frequency, magnitude, and duration as those seen in the younger cohort.
Neutralizing antibody responses to WNV were elicited by DNA vaccination in humans, including in older individuals, where responses to traditional vaccine approaches are often diminished. This DNA vaccine elicited T cell responses of greater magnitude when compared with an earlier-generation construct utilizing a CMV promoter.
NCT00300417.

0 Followers
 · 
115 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Targeting DNA vaccines to dendritic cells (DCs) greatly enhances immunity. Although several approaches have been used to target protein antigens to DCs, currently there is no method that targets DNA vaccines directly to DCs. Here, we show that a small peptide derived from the rabies virus glycoprotein, fused to protamine residues (RVG-P) can target DNA to myeloid cells, including DCs, that results in enhanced humoral and T-cell responses. DCs targeted with a DNA vaccine encoding the immunodominant vaccinia B8R gene via RVG-P were able to restimulate vaccinia-specific memory T cells in vitro. Importantly, a single i.v. injection of B8R gene bound to RVG-P was able prime a vaccinia-specific T-cell response that was able to rapidly clear a subsequent vaccinia challenge in mice. Moreover, delivery of DNA in DCs was enough to induce DC maturation and efficient antigen presentation without the need for adjuvants. Finally, immunization of mice with a DNA-vaccine encoding West Nile virus (WNV) prM and E proteins via RVG-P elicited high titers of WN neutralizing antibodies that protected mice from lethal WNV challenge. Thus, RVG-P provides a reagent to target DNA vaccines to myeloid cells and elicit robust T-cell and humoral immune responses.This article is protected by copyright. All rights reserved
    European Journal of Immunology 01/2015; 45(1). DOI:10.1002/eji.201445010 · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human papilloma virus-like particles (HPV VLP) serve as the basis of the current licensed vaccines for HPV. We have previously shown that encapsidation of DNA expressing the model antigen M/M2 from respiratory syncytial virus (RSV) in HPV pseudovirions (PsV) is immunogenic when delivered intravaginally. Because the HPV capsids confer tropism for basal epithelium, they represent attractive carriers for vaccination targeted to the skin using microneedles. In this study we asked: 1) whether HPV16 VLP administered by microneedles could induce protective immune responses to HPV16 and 2) whether HPV16 PsV-encapsidated plasmids delivered by microneedles could elicit immune responses to both HPV and the antigen delivered by the transgene. Mice immunized with HPV16 VLP coated microneedles generated robust neutralizing antibody responses and were protected from HPV16 challenge. Microneedle arrays coated with HPV16-M/M2 or HPV16-F protein (genes of RSV) were then tested and dose-dependent HPV and F-specific antibody responses were detected post-immunization, and M/M2-specific T-cell responses were detected post RSV challenge, respectively. HPV16 PsV-F immunized mice were fully protected from challenge with HPV16 PsV and had reduced RSV viral load in lung and nose upon intranasal RSV challenge. In summary, HPV16 PsV-encapsidated DNA delivered by microneedles induced neutralizing antibody responses against HPV and primed for antibody and T-cell responses to RSV antigens encoded by the encapsidated plasmids. Although the immunogenicity of the DNA component was just above the dose response threshold, the HPV-specific immunity was robust. Taken together, these data suggest microneedle delivery of lyophilized HPV PsV could provide a practical, thermostable combined vaccine approach that could be developed for clinical evaluation.
    PLoS ONE 01/2015; 10(3):e0120797. DOI:10.1371/journal.pone.0120797 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Needle-free delivery improves the immunogenicity of DNA vaccines but is also associated with more local reactogenicity. Here we report the first comparison of Biojector and needle administration of a candidate rAd5 HIV vaccine. Methods: Thirty-one adults, 18-55 years, 20 naive and 11 prior rAd5 vaccine recipients were randomized to receive single rAd5 vaccine via needle or Biojector IM injection at 10(10) PU in a Phase I open label clinical trial. Solicited reactogenicity was collected for 5 days; clinical safety and immunogenicity follow-up was continued for 24 weeks. Results: Overall, injections by either method were well tolerated. There were no serious adverse events. Frequency of any local reactogenicity was 16/16 (100%) for Biojector compared to 11/15 (73%) for needle injections. There was no difference in HIV Env-specific antibody response between Biojector and needle delivery. Env-specific antibody responses were more than 10-fold higher in subjects receiving a booster dose of rAd5 vaccine than after a single dose delivered by either method regardless of interval between prime and boost. Conclusions: Biojector delivery did not improve antibody responses to the rAd5 vaccine compared to needle administration. Homologous boosting with rAd5 gene-based vectors can boost insert-specific antibody responses despite pre-existing vector-specific immunity.
    PLoS ONE 09/2014; 9(9):e106240. DOI:10.1371/journal.pone.0106240 · 3.53 Impact Factor

Preview

Download
0 Downloads
Available from