Article

Mouse Conjunctival Forniceal Gene Expression during Postnatal Development and Its Regulation by Kruppel-like Factor 4

Department of Ophthalmology, University of Pittsburgh School of Medicine, Eye and Ear Institute, 203 Lothrop Street, Pittsburgh PA 15213, USA.
Investigative ophthalmology & visual science (Impact Factor: 3.66). 03/2011; 52(8):4951-62. DOI: 10.1167/iovs.10-7068
Source: PubMed

ABSTRACT To identify the changes in postnatal mouse conjunctival forniceal gene expression and their regulation by Klf4 during the eye-opening stage when the goblet cells first appear.
Laser microdissection (LMD) was used to collect conjunctival forniceal cells from postnatal (PN) day 9, PN14 and PN20 wild-type (WT), and PN14 Klf4-conditional null (Klf4CN) mice, in which goblet cells are absent, developing, present, and missing, respectively. Microarrays were used to compare gene expression among these groups. Expression of selected genes was validated by quantitative RT-PCR, and spatiotemporal expression was assessed by in situ hybridization.
This study identified 668, 251, 1160, and 139 transcripts that were increased and 492, 377, 1419, and 57 transcripts that were decreased between PN9 and PN14, PN14 and PN20, PN9 and PN20, and PN14 WT and Klf4CN conjunctiva, respectively. Transcripts encoding transcription factors Spdef, FoxA1, and FoxA3 that regulate goblet cell development in other mucosal epithelia, and epithelium-specific Ets (ESE) transcription factor family members were increased during conjunctival development. Components of pathways related to the mesenchymal-epithelial transition, glycoprotein biosynthesis, mucosal immunity, signaling, and endocytic and neural regulation were increased during conjunctival development. Conjunctival Klf4 target genes differed significantly from the previously identified corneal Klf4 target genes, implying tissue-dependent regulatory targets for Klf4.
The changes in gene expression accompanying mouse conjunctival development were identified, and the role of Klf4 in this process was determined. This study provides new probes for examining conjunctival development and function and reveals that the gene regulatory network necessary for goblet cell development is conserved across different mucosal epithelia.

Download full-text

Full-text

Available from: Shivalingappa Swamynathan, Mar 11, 2014
1 Follower
 · 
111 Views
  • Source
    • "In situ hybridization was performed as earlier (Gupta et al., 2011; Norman et al., 2004) using 12 mm cryosections cut from OCT-embedded eye tissues flash-frozen in liquid nitrogen. Freshly cut sections were fixed in 4% paraformaldehyde, treated with proteinase K (0.2 mg/mL PBS) for 5 min, and processed as described earlier (Gupta et al., 2011; Norman et al., 2004). Riboprobes were synthesized using digoxigenin (DIG) RNA labeling kit (Sp6/T7; Roche Molecular Biochemicals, Indianapolis, IN) with linearized plasmid cDNA templates for respective genes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Conditional disruption of Klf4 in the surface ectoderm-derived tissues of the eye results in defective cornea, conjunctiva and the lens. This report describes the effects of disruption of Klf4 in the lens in greater detail. Expression of Klf4, first detected in the embryonic day-12 (E12) mouse lens, peaked at E16 and was decreased in later stages. Early embryonic disruption of Klf4 resulted in a smaller lens with cortical vacuolation and nuclear opacity. Microarray comparison of Klf4CN and WT lens transcriptomes revealed fewer changes in the E16.5 (59 increases, 20 decreases of >1.5-fold) than the PN56 Klf4CN lens (239 increases, 182 decreases of >2-fold). Klf4-target genes in the lens were distinct from those previously identified in the cornea, suggesting disparate functions for Klf4 in these functionally related tissues. Transcripts encoding different crystallins were down-regulated in the Klf4CN lens. Shsp/αB-crystallin promoter activity was stimulated upon co-transfection with pCI-Klf4. Mitochondrial density was significantly higher in the Klf4CN lens epithelial cells, consistent with mitochondrial dysfunction being the most significantly affected pathway within the PN56 Klf4CN lens. The Klf4CN lens contained elevated levels of Alox12 and Alox15 transcripts, less reduced glutathione (GSH) and more oxidized glutathione (GSSG) than the WT, suggesting that it is oxidatively stressed. Although the expression of 2087 genes was modulated during WT lens maturation, transcripts encoding crystallins were abundant at E16.5 and remained stable at PN56. Among the 1065 genes whose expression increased during WT lens maturation, there were 104 Klf4-target genes (9.8%) with decreased expression in the PN56 Klf4CN lens. Taken together, these results demonstrate that Klf4 expression is developmentally regulated in the mouse lens, where it controls the expression of genes associated with lens maturation and redox homeostasis.
    Experimental Eye Research 09/2013; 116. DOI:10.1016/j.exer.2013.09.010 · 3.02 Impact Factor
  • Source
    • "Branching and differentiation of both lacrimal and meibomian glands is complete by around eyelid opening. Conjunctival goblet cells, which produce and secrete soluble mucins to the tear film, also first appear around PN12 [16], meeting the final physiological requirement for a fully functional lacrimal system before the eyelids open. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The ocular surface-a continuous epithelial surface with regional specializations including the surface and glandular epithelia of the cornea, conjunctiva, and lacrimal and meibomian glands connected by the overlying tear film-plays a central role in vision. Molecular and cellular events involved in embryonic development, postnatal maturation, and maintenance of the ocular surface are precisely regulated at the level of gene expression by a well-coordinated network of transcription factors. A thorough appreciation of the biological characteristics of the ocular surface in terms of its gene expression profiles and their regulation provides us with a valuable insight into the pathophysiology of various blinding disorders that disrupt the normal development, maturation, and/or maintenance of the ocular surface. This paper summarizes the current status of our knowledge related to the ocular surface development and gene expression and the contribution of different transcription factors to this process.
    Journal of Ophthalmology 02/2013; 2013:103947. DOI:10.1155/2013/103947 · 1.94 Impact Factor
  • Source
    • "The expression of Fbn2 in sclera was found to be downregulated with an increase in postnatal age (Figure 4). The results correlated with a microarray study on mouse conjunctiva by Gupta et al. [20], whereby both Igf2 and Fbn2 were reported to be among the most decreased transcripts when comparing postnatal day 20 and 9 in conjunctival tissue. In addition, in a paper by Jordan et al. [21], Fbn2 expression was described to be relatively robust during early fetal development, but expression declined to low levels in postnatal tissue, suggesting it might regulate elastic fiber assembly. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to identify the genes and pathways underlying the growth of the mouse sclera during postnatal development. Total RNA was isolated from each of 30 single mouse sclera (n=30, 6 sclera each from 1-, 2-, 3-, 6-, and 8-week-old mice) and reverse-transcribed into cDNA using a T7-N(6) primer. The resulting cDNA was fragmented, labeled with biotin, and hybridized to a Mouse Gene 1.0 ST Array. ANOVA analysis was then performed using Partek Genomic Suite 6.5 beta and differentially expressed transcript clusters were filtered based on a selection criterion of ≥ 2 relative fold change at a false discovery rate of ≤ 5%. Genes identified as involved in the main biologic processes during postnatal scleral development were further confirmed using qPCR. A possible pathway that contributes to the postnatal development of the sclera was investigated using Ingenuity Pathway Analysis software. The hierarchical clustering of all time points showed that they did not cluster according to age. The highest number of differentially expressed transcript clusters was found when week 1 and week 2 old scleral tissues were compared. The peroxisome proliferator- activated receptor gamma coactivator 1-alpha (Ppargc1a) gene was found to be involved in the networks generated using Ingenuity Pathway Studio (IPA) from the differentially expressed transcript cluster lists of week 2 versus 1, week 3 versus 2, week 6 versus 3, and week 8 versus 6. The gene expression of Ppargc1a varied during scleral growth from week 1 to 2, week 2 to 3, week 3 to 6, and week 6 to 8 and was found to interact with a different set of genes at different scleral growth stages. Therefore, this indicated that Ppargc1a might play a role in scleral growth during postnatal weeks 1 to 8. Gene expression of eye diseases should be studied as early as postnatal weeks 1-2 to ensure that any changes in gene expression pattern during disease development are detected. In addition, we propose that Ppargc1a might play a role in regulating postnatal scleral development by interacting with a different set of genes at different scleral growth stages.
    Molecular vision 06/2012; 18:1436-48. · 2.25 Impact Factor
Show more