Article

Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells

Cancer Biology Program, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
Blood (Impact Factor: 9.78). 02/2011; 117(16):4253-61. DOI: 10.1182/blood-2010-11-319517
Source: PubMed

ABSTRACT Src homology 2 domain-containing phosphatase 2 (Shp2), encoded by Ptpn11, is a member of the nonreceptor protein-tyrosine phosphatase family, and functions in cell survival, proliferation, migration, and differentiation in many tissues. Here we report that loss of Ptpn11 in murine hematopoietic cells leads to bone marrow aplasia and lethality. Mutant mice show rapid loss of hematopoietic stem cells (HSCs) and immature progenitors of all hematopoietic lineages in a gene dosage-dependent and cell-autonomous manner. Ptpn11-deficient HSCs and progenitors undergo apoptosis concomitant with increased Noxa expression. Mutant HSCs/progenitors also show defective Erk and Akt activation in response to stem cell factor and diminished thrombopoietin-evoked Erk activation. Activated Kras alleviates the Ptpn11 requirement for colony formation by progenitors and cytokine/growth factor responsiveness of HSCs, indicating that Ras is functionally downstream of Shp2 in these cells. Thus, Shp2 plays a critical role in controlling the survival and maintenance of HSCs and immature progenitors in vivo.

0 Bookmarks
 · 
142 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genes that regulate osteoclast (OC) development and function in both physiologic and disease conditions remain incompletely understood. Shp2 (the Src homology-2 domain containing protein tyrosine phosphatase 2), a ubiquitously expressed cytoplasmic protein tyrosine phosphatase, is implicated in regulating M-CSF and receptor activator of nuclear factor-κB ligand (RANKL)-evoked signaling; its role in osteoclastogenesis and bone homeostasis, however, remains unknown. Using a tissue-specific gene knockout approach, we inactivated Shp2 expression in murine OCs. Shp2 mutant mice are phenotypically osteopetrotic, featuring a marked increase of bone volume (BV)/total volume (TV) (+42.8%), trabeculae number (Tb.N) (+84.1%), structure model index (+119%), and a decrease of trabecular thickness (Tb.Th) (-34.1%) and trabecular spacing (Tb.Sp) (-41.0%). Biochemical analyses demonstrate that Shp2 is required for RANKL-induced formation of giant multinucleated OCs by up-regulating the expression of nuclear factor of activated T cells, cytoplasmic 1 (Nfatc1), a master transcription factor that is indispensable for terminal OC differentiation. Shp2 deletion, however, has minimal effect on M-CSF-dependent survival and proliferation of OC precursors. Instead, its deficiency aborts the fusion of OC precursors and formation of multinucleated OCs and decreases bone matrix resorption. Moreover, pharmacological intervention of Shp2 is sufficient to prevent preosteoclast fusion in vitro. These findings uncover a novel mechanism through which Shp2 regulates osteoclastogenesis by promoting preosteoclast fusion. Shp2 or its signaling partner(s) could potentially serve as pharmacological target(s) to regulate the population of OCs locally and/or systematically, and thus treat OC-related diseases, such as periprosthetic osteolysis and osteoporosis.-Zhou, Y., Mohan, A., Moore, D. C., Lin, L., Zhou, F. L., Cao, J., Wu, Q., Qin, Y. -X., Reginato, A. M., Ehrlich, M. G., Yang, W. SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion. © FASEB.
    The FASEB Journal 01/2015; DOI:10.1096/fj.14-260844 · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic stem cell (HSC) function is regulated by activation of receptor tyrosine kinases (RTKs). Receptor protein tyrosine phosphatases (PTPs) counterbalance RTK signaling; however, the functions of receptor PTPs in HSCs remain incompletely understood. We found that a receptor PTP, PTPσ, was substantially overexpressed in mouse and human HSCs compared with more mature hematopoietic cells. Competitive transplantation of bone marrow cells from PTPσ-deficient mice revealed that the loss of PTPσ substantially increased long-term HSC-repopulating capacity compared with BM cells from control mice. While HSCs from PTPσ-deficient mice had no apparent alterations in cell-cycle status, apoptosis, or homing capacity, these HSCs exhibited increased levels of activated RAC1, a RhoGTPase that regulates HSC engraftment capacity. shRNA-mediated silencing of PTPσ also increased activated RAC1 levels in wild-type HSCs. Functionally, PTPσ-deficient BM cells displayed increased cobblestone area-forming cell (CAFC) capacity and augmented transendothelial migration capacity, which was abrogated by RAC inhibition. Specific selection of human cord blood CD34+CD38-CD45RA-lin- PTPσ- cells substantially increased the repopulating capacity of human HSCs compared with CD34+CD38-CD45RA-lin- cells and CD34+CD38-CD45RA-lin-PTPσ+ cells. Our results demonstrate that PTPσ regulates HSC functional capacity via RAC1 inhibition and suggest that selecting for PTPσ-negative human HSCs may be an effective strategy for enriching human HSCs for transplantation.
    Journal of Clinical Investigation 11/2014; 125(1). DOI:10.1172/JCI77866 · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2), encoded by PTPN11, regulates signaling networks and cell fate in many tissues. Expression of oncogenic PTPN11 in the hematopoietic compartment causes myeloproliferative neoplasm (MPN) in humans and mice. However, the stage-specific effect(s) of mutant Ptpn11 on erythroid development have remained unknown. We found that expression of an activated, leukemogenic Ptpn11 allele, Ptpn11D61Y, specifically in the erythroid lineage causes dyserythropoiesis in mice. Ptpn11D61Y progenitors produce excess cKIT+CD71+Ter119- cells and aberrant numbers of cKITl°CD71+ erythroblasts. Mutant erythroblasts show elevated activation of ERK, AKT and STAT3 in response to EPO stimulation, and MEK inhibitor treatment blocks Ptpn11D61Y-evoked erythroid hyperproliferation in vitro. Thus, the expression of oncogenic Ptpn11 causes dyserythropoiesis in a cell-autonomous manner in vivo.
    PLoS ONE 10/2014; 9(10):e109682. DOI:10.1371/journal.pone.0109682 · 3.53 Impact Factor

Full-text

Download
47 Downloads
Available from
May 28, 2014