Article

Intrinsic bending of microtubule protofilaments.

Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA.
Structure (Impact Factor: 5.99). 03/2011; 19(3):409-17. DOI: 10.1016/j.str.2010.12.020
Source: PubMed

ABSTRACT The complex polymerization dynamics of the microtubule (MT) plus end are closely linked to the hydrolysis of the GTP nucleotide bound to the β-tubulin. The destabilization is thought to be associated with the conformational change of the tubulin dimers from the straight conformation in the MT lattice to a curved conformation. It remains under debate whether this transformation is directly related to the nucleotide state, or a consequence of the longitudinal or lateral contacts in the MT lattice. Here, we present large-scale atomistic simulations of short tubulin protofilaments with both nucleotide states, starting from both extreme conformations. Our simulations indicate that both interdimer and intradimer contacts in both GDP and GTP-bound tubulin dimers and protofilaments in solution bend. There are no observable differences between the mesoscopic properties of the contacts in GTP and GDP-bound tubulin or the intradime and interdimer interfaces.

0 Bookmarks
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the mechanical behavior of microtubule (MT) protofilaments under the action of bending forces, ramped up linearly in time, to provide insight into the severing of MTs by microtubule associated proteins (MAPs). We used the self-organized polymer model which employs a coarse-grained description of the protein chain and ran Brownian dynamics simulations accelerated on graphics processing units that allow us to follow the dynamics of a MT system on experimental timescales. Our study focused on the role played in the MT depolymerization dynamics by the inter-tubulin contacts a protofilament experiences when embedded in the MT lattice, and the number of binding sites of MAPs on MTs. We found that proteins inducing breaking of MTs must have at least three attachment points on any tubulin dimer from an isolated protofilament. In contrast, two points of contact would suffice when dimers are located in an intact MT lattice, in accord with experimental findings on MT severing proteins. Our results show that confinement of a protofilament in the MT lattice leads to a drastic reduction in the energy required for the removal of tubulin dimers, due to the drastic reduction in entropy. We further showed that there are differences in the energetic requirements based on the location of the dimer to be removed by severing. Comparing the energy of tubulin dimers removal revealed by our simulations with the amount of energy resulting from one ATP hydrolysis, which is the source of energy for all MAPs, we provided strong evidence for the experimental finding that severing proteins do not bind uniformly along the MT wall.
    The Journal of Chemical Physics 09/2013; 139(12):121926. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The possibility to arrange biological molecules into ordered nanostructures is an important issue in nano- and bio-technology. Nature offers a wide range of molecular "bricks" (e.g., proteins, oligonucleotides, etc.) that spontaneously assemble into more complex hierarchical systems with unique functionalities. Such molecular building blocks can be also used for the construction of nanomaterials with peculiar properties (e.g., DNA origami). In some cases, molecular glues able to bind biomolecules and to induce their assembly can be used to control the final structure and properties in a convenient way. Here we provide molecular-level description of how molecular glues designed to stick to the surface of microtubules (MTs) can control and transform the α/β-tubulin assembly upon temperature decreasing. By means of all-atom molecular dynamics (MD) simulations, we compared the adhesion to the MT surface of three molecular glues bearing the same guanidinium ion surface adhesive groups, but having different architecture - i.e., linear or dendritic backbone. Our evidences demonstrate that the adhesive properties of the different molecular glues are dependent of the shape they assume in solution. In particular, adhesion data from our MD simulations explain how globular- or linear-like molecular glues respectively stabilize MTs or transform them into a well-defined array of α/β-tubulin-rings at 15 °C, where MTs naturally depolymerize. The comprehension of the MT transformation mechanism provides a useful rationale for designing ad hoc molecular glues to obtain ordered protein nanostructures from different biological materials.
    ACS Nano 12/2013; · 12.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: αβ-tubulin dimers need to convert between a 'bent' conformation observed for free dimers in solution and a 'straight' conformation required for incorporation into the microtubule lattice. Here, we investigate the free energy landscape of αβ-tubulin using molecular dynamics simulations, emphasizing implications for models of assembly, and modulation of the conformational landscape by colchicine, a tubulin-binding drug that inhibits microtubule polymerization. Specifically, we performed molecular dynamics, potential-of-mean force simulations to obtain the free energy profile for unpolymerized GDP-bound tubulin as a function of the ∼12° intradimer rotation differentiating the straight and bent conformers. Our results predict that the unassembled GDP-tubulin heterodimer exists in a continuum of conformations ranging between straight and bent, but, in agreement with existing structural data, suggests that an intermediate bent state has a lower free energy (by ∼1 kcal/mol) and thus dominates in solution. In agreement with predictions of the lattice model of microtubule assembly, lateral binding of two αβ-tubulins strongly shifts the conformational equilibrium towards the straight state, which is then ∼1 kcal/mol lower in free energy than the bent state. Finally, calculations of colchicine binding to a single αβ-tubulin dimer strongly shifts the equilibrium toward the bent states, and disfavors the straight state to the extent that it is no longer thermodynamically populated.
    PLoS Computational Biology 02/2014; 10(2):e1003464. · 4.87 Impact Factor