Article

Mycophenolic acid response biomarkers: a cell line model system-based genome-wide screen.

Division of Clinical Pharmacology, Department of Pharmacology and Experimental Therapeutics, Rochester, MN 55905, USA.
International immunopharmacology (Impact Factor: 2.21). 03/2011; 11(8):1057-64. DOI: 10.1016/j.intimp.2011.02.027
Source: PubMed

ABSTRACT Mycophenolic acid (MPA) is commonly used to treat patients with solid organ transplants during maintenance immunosuppressive therapy. Response to MPA varies widely, both for efficacy and drug-induced toxicity. A portion of this variation can be explained by pharmacokinetic and pharmacodynamic factors, including genetic variation in MPA-metabolizing UDP-glucuronyltransferase isoforms and the MPA targets, inosine monophosphate dehydrogenase 1 and 2. However, much of the variation in MPA response presently remains unexplained. We set out to determine whether there might be additional genes that modify response to MPA by performing a genome-wide association study between basal gene mRNA expression profiles and an MPA cytotoxicity phenotype using a 271 human lymphoblastoid cell line model system to identify and functionally validate genes that might contribute to variation in MPA response. Our association study identified 41 gene expression probe sets, corresponding to 35 genes, that were associated with MPA cytotoxicity as a drug response phenotype (p<1×10(-6)). Follow-up siRNA-mediated knockdown-based functional validation identified four of these candidate genes, C17orf108, CYBRD1, NASP, and RRM2, whose knockdown shifted the MPA cytotoxicity curves in the direction predicted by the association analysis. These studies have identified novel candidate genes that may contribute to variation in response to MPA therapy and, as a result, may help make it possible to move toward more highly individualized MPA-based immunosuppressive therapy.

0 Bookmarks
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to predict how an individual patient will respond to a particular treatment is the ambitious goal of personalized medicine. The genetic make up of an individual has been shown to play a role in drug response. For pharmacogenomic studies, human lymphoblastoid cell lines (LCLs) comprise a useful model system for identifying genetic variants associated with pharmacologic phenotypes. The availability of extensive genotype data for many panels of LCLs derived from individuals of diverse ancestry allows for the study of genetic variants contributing to interethnic and interindividual variation in susceptibility to drugs. Many genome-wide association studies for drug-induced phenotypes have been performed in LCLs, often incorporating gene-expression data. LCLs are also being used in follow-up studies to clinical findings to determine how an associated variant functions to affect phenotype. This review describes the most recent pharmacogenomic findings made in LCLs, including the translation of some findings to clinical cohorts.
    Pharmacogenomics 01/2012; 13(1):55-70. · 3.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial LYRM (leucine/tyrosine/arginine motif) proteins are members of the Complex1_LYR-like superfamily. Individual LYRM proteins have been identified as accessory subunits or assembly factors of mitochondrial OXPHOS (oxidative phosphorylation) complexes I, II, III and V respectively, and they play particular roles in the essential Fe-S cluster biogenesis and in acetate metabolism. LYRM proteins have been implicated in mitochondrial dysfunction, e.g. in the context of insulin resistance. However, the functional significance of the common LYRM is still unknown. Analysis of protein-protein interaction screens suggests that LYRM proteins form protein complexes with phylogenetically ancient proteins of bacterial origin. Interestingly, the mitochondrial FAS (fatty acid synthesis) type II acyl-carrier protein ACPM associates with some of the LYRM protein-containing complexes. Eukaryotic LYRM proteins interfere with mitochondrial homoeostasis and might function as adaptor-like 'accessory factors'.
    Biochemical Society Transactions 10/2013; 41(5):1335-41. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major drawback for genetic studies as well as long-term genotype-phenotype correlation studies in cancer is lack of representative human cell lines providing a continuous source of basic biomolecules and a system to carry out various experimental investigations. This can be overcome to some extent by establishing lymphoblastoid cell lines (LCLs) by infecting peripheral blood lymphocytes with Epstein Barr virus (EBV) which is known to immortalize human resting B cells in vitro giving rise to actively proliferating B-lymphoblastoid cell lines. The present study involves preparation and characterization of LCLs generated from patients with multiple primary neoplasms (MPN) of upper aero-digestive tract (UADT). Thirty seven LCLs were established from UADT MPN patients and healthy age, sex and habit matched controls using EBV crude stock. Characterization was done with respect to expression of CD-19 (Pan B-cell marker), CD3 (T cell specific marker), CD56 (NK-cell specific marker), cell morphology, ploidy analysis, genotype and gene expression comparison with the parent lymphocytes. LCLs showed rosette morphology with doubling time of approximately 24 h. Ploidy analysis showed diploid DNA content which was maintained for at least 30 population doublings. When compared with parent lymphocytes there appeared no change at genetic and gene expression level. Our results show that lymphoblastoid cell lines are a good surrogate of isolated lymphocytes bearing their close resemblance at genetic and phenotypic level to parent lymphocytes and are a valuable resource for understanding genotype-phenotype interactions.
    The Indian Journal of Medical Research 06/2012; 135(6):820-9. · 2.06 Impact Factor

Full-text (2 Sources)

View
5 Downloads
Available from
May 30, 2014