Article

Detection of porcine endogenous retrovirus (PERV) viremia in diseased versus healthy US pigs by qualitative and quantitative real-time RT-PCR.

Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, USA.
Transboundary and Emerging Diseases (Impact Factor: 3.12). 03/2011; 58(4):344-51. DOI: 10.1111/j.1865-1682.2011.01210.x
Source: PubMed

ABSTRACT Previous studies have linked levels of porcine endogenous retroviruses (PERV) with poor health and disease in pigs. To determine the levels of expression of PERVs and their potential association with disease expression, real-time reverse transcriptase (RT) PCR assays were used to assess PERV-ABC, PERV-C and PERV-A/C levels in three commercial swine operations in the United States. Pigs (n = 204) aged 3-25 weeks were screened, and all 369 serum samples collected were found to be positive for PERV-ABC RNA as expected. PERV-C and PERV-A/C RNA were detected in 24.1% (89/369) and 18.7% (69/369) of the samples, respectively. When divided into age groups, PERV-A/C RNA was identified in 20.0% (43/215) of the nursery pig samples (3-9 weeks of age) compared to 16.9% (26/154) finisher pig samples (12-25 weeks of age). On two of the farms, serum was collected from healthy pigs (n = 60) and from pen-mates with various clinical conditions including diarrhoea, wasting and respiratory disease (n = 60). Overall, 25% (15/60) of the samples from clinically affected pigs were found to be positive for PERV-A/C RNA, whereas in clinically healthy pigs, only 8.3% (5/60) of the samples were found to be PERV-A/C positive (P = 0.026). It was possible to identify PERV-A/C in the same pigs on more than one consecutive bleeding, indicating variable length of PERV-A/C viremia. The results indicate that there is an increased incidence of PERV-A/C viremia in diseased pigs and that PERV-A/C can be detected over time in selected pigs within commercial pig production systems in the United States.

0 Followers
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past two decades or so, a number of viruses have emerged in the global swine population. Some, such as porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), cause economically important diseases in pigs, whereas others such as porcine torque teno virus (TTV), now known as Torque teno sus virus (TTSuV), porcine bocavirus (PBoV) and related novel parvoviruses, porcine kobuvirus, porcine toroviruses (PToV) and porcine lymphotropic herpesviruses (PLHV), are mostly subclinical in swine herds. Although some emerging swine viruses such as swine hepatitis E virus (swine HEV), porcine endogenous retrovirus (PERV) and porcine sapovirus (porcine SaV) may have a limited clinical implication in swine health, they do pose a potential public health concern in humans due to zoonotic (swine HEV) or potential zoonotic (porcine SaV) and xenozoonotic (PERV, PLHV) risks. Other emerging viruses such as Nipah virus, Bungowannah virus and Menangle virus not only cause diseases in pigs but some also pose important zoonotic threat to humans. This article focuses on emerging and re-emerging swine viruses that have a limited or uncertain clinical and economic impact on pig health. The transmission, epidemiology and pathogenic potential of these viruses are discussed. In addition, the two economically important emerging viruses, PRRSV and PCV2, are also briefly discussed to identify important knowledge gaps.
    Transboundary and Emerging Diseases 01/2012; 59. DOI:10.1111/j.1865-1682.2011.01291.x · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Porcine endogenous retroviruses (PERV) represent a risk for xenotransplantation using pig cells, tissues or organs. PERV-A and PERV-B are present in the genome of all pigs and both infect human cells in vitro. PERV-C infects only pig cells and it is integrated in the genome of most, but not all pigs. Recombinants between PERV-A and PERV-C were described that infect human cells and replicate at high titres. To avoid such recombinations, PERV-C positive animals should not be used for breeding animals suited for xenotransplantation. In order to detect PERV-C positive pigs, different methods were developed such as specific PCRs using different primers, a highly sensitive nested PCR and a real-time PCR allowing measurement of proviral copy numbers. The real-time PCR was found to be useful to discriminate between contamination and actual provirus copies. The PCRs were optimized and their sensitivity was determined. Screening can be started with PCR1, if the result is negative, PCR2 to PCR5 or the nested PCR should be used, if the result is positive, the real-time PCR should be used to exclude contaminations. All methods were used to evaluate the prevalence of PERV-C and to identify PERV-C free animals. Due to the risk of contamination with cells from other animals testing should be performed with blood cells, not with ear biopsies.
    Journal of virological methods 07/2011; 175(1):60-5. DOI:10.1016/j.jviromet.2011.04.017 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peste des Petits Ruminants (PPR) is an important viral disease of small ruminants and is endemic in Pakistan. In the following study, samples from two outbreaks of PPR in goats have been subjected to laboratory investigations. The Peste des Petits Ruminants virus (PPRV) genome was detected using both conventional and real-time PCR. Genetic characterization of the local PPRV field isolates was conducted by sequencing 322 bp of the fusion (F) gene and 255 bp of the nucleoprotein (N) gene. The phylogenetic tree based on the F gene clustered samples from both outbreaks into lineage 4 along with other Asian isolates, specifically into subcluster 1 along with isolates from Middle East. Analysis of N gene revealed a different pattern. In this case, the Pakistani samples clustered with Chinese, Tajikistani and Iranian isolates, which probably represents the true geographical pattern of virus circulation. This is the first report presenting the phylogenetic tree based on N gene as well as performing a parallel comparison of the trees of F and N gene together from Pakistani isolates. The results of this study shed light on the PPRV population in Pakistan and emphasize the importance of using molecular methods to understand the epidemiology. Such understanding is essential in any efforts to control the number and impact of outbreaks that are occurring in endemic countries such as Pakistan, especially in the current scenario where OIE and FAO are eager to control and subsequently eradicate PPR from the globe, as has been achieved for Rinderpest.
    Transboundary and Emerging Diseases 07/2011; 59(1):85-93. DOI:10.1111/j.1865-1682.2011.01245.x · 3.12 Impact Factor