Article

Acanthamoeba sp. promotes the survival and growth of Acinetobacter baumanii.

Laboratoire de parasitologie et mycologie médicale, Faculté de médecine et de pharmacie, Poitiers, France.
FEMS Microbiology Letters (Impact Factor: 2.05). 03/2011; 319(1):19-25. DOI: 10.1111/j.1574-6968.2011.02261.x
Source: PubMed

ABSTRACT Acinetobacter baumanii, which may be found in water, is an important emerging hospital-acquired pathogen. Free-living amoebae can be recovered from the same water networks, and it has been shown that these protozoa may support the growth of other bacteria. In this paper, we have studied potential relationships between A. baumanii and Acanthamoeba species. Two strains of A. baumanii isolated from hospital water were co-cultivated with the trophozoites or supernatants of two free-living amoebae strains: Acanthamoeba castellanii or Acanthamoeba culbertsoni. Firstly, the presence of the amoebae or their supernatants induced a major increase in A. baumanii growth, compared with controls. Secondly, A. baumanii affected only the viability of A. culbertsonii, with no effect on A. castellanii. Electron microscopy observations of the cultures investigating the bacterial location in the protozoa showed persistence of the bacteria within cyst wall even after 60 days of incubation. In our study, the survival and growth of A. baumanii could be favored by Acanthamoeba strains. Special attention should consequently be paid to the presence of free-living amoebae in hospital water systems, which can promote A. baumanii persistence.

0 Bookmarks
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.
    Frontiers in microbiology. 01/2014; 5:240.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enterohemorrhagic Escherichia coli (EHEC) are involved in outbreaks of food-borne illness and transmitted to humans through bovine products or water contaminated by cattle feces. Microbial interaction is one of the strategies used by pathogenic bacteria to survive in the environment. Among protozoa, the free-living amoebae are known to host and protect several water-borne pathogens. In this study, the interaction between EHEC and the predacious protozoa Acanthamoeba castellanii was investigated. Using monoculture and cocultures, growth of both organisms was estimated for 3 weeks by total and viable cell counts. The numbers of EHEC were significantly higher when cultured with amoebae than without, and less EHEC shifted into a viable but nonculturable state in the presence of amoebae. Using several mutants, we observed that the Pho regulon is required for EHEC growth when cocultured with amoebae. In contrast, the Shiga toxins (Stx) were not involved in this association phenotype. Cocultures monitored by electron microscopy revealed a loss of the regular rod shape of EHEC and the secretion of multilamellar vesicles by the amoebae, which did not contain bacteria. As the interaction between A. castellanii and EHEC appears beneficial for bacterial growth, this supports a potential role for protozoa in promoting the persistence of EHEC in the environment.
    MicrobiologyOpen. 10/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acinetobacter baumannii is a multidrug resistant pathogen capable of causing a wide spectrum of clinical conditions in humans. Acinetobacter spp. is ubiquitously found in different water sources. Chlorine being the most commonly used disinfectant in water, the study investigated the effect of chlorine on the survival of A. baumannii in water and transcription of genes conferring antibiotic resistance. Eight clinical isolates of A. baumannii, including a fatal meningitis isolate (ATCC 17978) (~108 CFU/mL) were separately exposed to free chlorine concentrations (0.2, 1, 2, 3 and 4 ppm) with a contact time of 30, 60, 90 and 120 second. The surviving pathogen counts at each specified contact time were determined using broth dilution assay. In addition, real-time quantitative PCR (RT-qPCR) analysis of the antibiotic resistance genes (efflux pump genes and those encoding resistance to specific antibiotics) of three selected A. baumannii strains following exposure to chlorine was performed. Results revealed that all eight A. baumannii isolates survived the tested chlorine levels during all exposure times (p > 0.05). Additionally, there was an up-regulation of all or some of the antibiotic resistance genes in A. baumannii, indicating a chlorine-associated induction of antibiotic resistance in the pathogen.
    International Journal of Environmental Research and Public Health 01/2014; 11(2):1844-54. · 2.00 Impact Factor

Full-text

View
0 Downloads