Evaluation of the Dengue NS1 Ag Strip® for detection of dengue virus antigen in Aedes aegypti (Diptera: Culicidae).

Environmental Health Institute, National Environmental Agency, Singapore, Singapore.
Vector borne and zoonotic diseases (Larchmont, N.Y.) (Impact Factor: 2.61). 03/2011; 11(6):789-92. DOI: 10.1089/vbz.2010.0028
Source: PubMed

ABSTRACT Dengue fever is currently one of the most important mosquito-borne diseases that affect humans. With neither vaccines nor treatment available, prevention of the disease relies heavily on surveillance and control of mosquito vectors. In the present study, we have evaluated and showed the potential use of the Dengue NS1 Ag Strip(®) for the detection of dengue virus (DENV) in Aedes aegypti. Initial results showed that the sensitivity of the test kit in detecting DENV in wild-caught mosquitoes is comparable to that of real-time reverse transcriptase-polymerase chain reaction. The detection of naturally infected Ae. aegypti with the NS1 rapid test kit in our dengue cluster investigation further illustrates its potential use for surveillance of DENV in wild mosquito populations. The kit can easily be used in a simple field station, and minimal training is required. The results can be obtained in less than an hour. Employment of the kit in the field could help guide mosquito control operations in the prioritization of resources in controlling the transmission of DENV. In this study the potential of the kit for field surveillance of infected dengue vectors, which are epidemiologically important, has been demonstrated.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Surveillance is a critical component of any dengue prevention and control programme. Herein, we investigate the efficiency of the commercial kit Platelia Dengue NS1 Ag-ELISA to detect dengue virus (DENV) antigens in Aedes aegypti mosquitoes infected under laboratory conditions. Under insectary conditions, four to five day-old mosquitoes were orally challenged with DENV-2 titer of 3.6 x 105 PFU equivalent/ml, incubated for 14 days and then killed. At ten time-points following mosquito death (0, 6, 12, 24, 72, 96, 120, 144 and 168 h), i.e., during a one-week period, dried mosquitoes were comparatively tested for the detection of the NS1 antigen with other methods of detection, such as qRT-PCR and virus isolation in C6/36 cells. We first observed that the NS1 antigen was more effective in detecting DENV-2 in Ae. aegypti between 12 and 72 h after mosquito death when compared with qRT-PCR. A second round involved comparing the sensitivity of detection of the NS1 antigen and virus isolation in C6/36 cells. The NS1 antigen was also more effective than virus isolation, detecting DENV-2 at all time-points, i.e., up to 168 h after mosquito death. Meanwhile, virus isolation was successful up to 96 h after Ae. aegypti death, but the number of positive samples per time period presented a tendency to decline progressively over time. From the 43 samples positive by the virus isolation technique, 38 (88.4%) were also positive by the NS1 test. Taken together, these results are the first to indicate that the NS1 antigen might be an interesting complementary tool to improve dengue surveillance through DENV detection in dried Ae. aegypti females.
    Parasites & Vectors 04/2014; 7(1):155. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we demonstrate an extremely efficient technique of diagnosing dengue virus non-structural protein (NS1) using Micro-Spot with Integrated Pillars (MSIP). Detection using MSIP is performed by employing fluorescence immunoassay specific to dengue virus NS1. MSIPs are chemically modified to ensure efficient covalent binding of antibodies on the micropillars, whereas the enormous increase in the surface area (available for the reaction) induced by the micropillars amplifies the apparent rate, which enhances the signal intensity. Therefore, the detection response of a MSIP, quantified by the intensity of the fluorescence signal, is found to be almost five times magnified than the response of a similar size micro-spot without micropillars. The response of the micropillars also depend on the pillar arrangement, since for identical concentration of dengue NS1 antigen, a stronger intensity signal is obtained for a hexagonal close packed array (staggered) pillar arrangement as compared to a square array arrangement.
    Biomedical Microdevices 07/2013; · 2.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue vector control programmes are facing operational challenges due to resistance against commonly used insecticides throughout the endemic countries. Recently, there has been appreciable increase in the dengue cases in India, however, no recent data are available on susceptible status of dengue vectors. We have studied the susceptibility level of St. albopicta to commonly used insecticides in India. Adult mosquitoes were tested for the presence of dengue virus.
    Parasites & Vectors 07/2014; 7(1):295. · 3.25 Impact Factor


Available from
Jun 1, 2014