Death or survival from invasive pneumococcal disease in Scotland: Associations with serogroups and multilocus sequence types

Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G128QQ, UK.
Journal of Medical Microbiology (Impact Factor: 2.25). 03/2011; 60(Pt 6):793-802. DOI: 10.1099/jmm.0.028803-0
Source: PubMed


We describe associations between death from invasive pneumococcal disease (IPD) and particular serogroups and sequence types (STs) determined by multilocus sequence typing (MLST) using data from Scotland. All IPD episodes where blood or cerebrospinal fluid (CSF) culture isolates were referred to the Scottish Haemophilus, Legionella, Meningococcal and Pneumococcal Reference Laboratory (SHLMPRL) from January 1992 to February 2007 were matched to death certification records by the General Register Office for Scotland. This represented 5959 patients. The median number of IPD cases in Scotland each year was 292. Deaths, from any cause, within 30 days of pneumococcal culture from blood or CSF were considered to have IPD as a contributing factor. Eight hundred and thirty-three patients died within 30 days of culture of Streptococcus pneumoniae from blood or CSF [13.95 %; 95 % confidence interval (13.10, 14.80)]. The highest death rates were in patients over the age of 75. Serotyping data exist for all years but MLST data were only available from 2001 onward. The risk ratio of dying from infection due to particular serogroups or STs compared to dying from IPD due to all other serogroups or STs was calculated. Fisher's exact test with Bonferroni adjustment for multiple testing was used. Age adjustment was accomplished using the Cochran-Mantel-Haenszel test and 95 % confidence intervals were reported. Serogroups 3, 11 and 16 have increased probability of causing fatal IPD in Scotland while serogroup 1 IPD has a reduced probability of causing death. None of the 20 most common STs were significantly associated with death within 30 days of pneumococcal culture, after age adjustment. We conclude that there is a stronger association between a fatal outcome and pneumococcal capsular serogroup than there is between a fatal outcome and ST.

Download full-text


Available from: Johanna M C Jefferies, Oct 04, 2015
36 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In September 2006, the seven-valent pneumococcal conjugate vaccine (PCV7; Prevenar) was introduced into the childhood vaccination schedule in the United Kingdom. We monitored the population of invasive pneumococci in Scotland in the 5 years preceding the introduction of PCV7 by using serogrouping, multilocus sequence typing (MLST), and eBURST analysis. Here, we present a unique analysis of a complete national data set of invasive pneumococci over this time. We observed an increase in invasive pneumococcal disease (IPD) caused by serotypes 1, 4, and 6 and a decrease in serogroup 14-, 19-, and 23-associated disease. Analysis of sequence type (ST) data shows a significant increase in ST306, associated with serotype 1, and a decrease in ST124, associated with serotype 14. There have also been increases in the amounts of IPD caused by ST227 (serotype 1) and ST53 (serotype 8), although these increases were not found to reach significance (P = 0.08 and 0.06, respectively). In the course of the study period preceding the introduction of PCV7, we observed considerable and significant changes in serogroup and clonal distribution over time.
    Journal of clinical microbiology 11/2009; 48(1):87-96. DOI:10.1128/JCM.01485-09 · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Serotype 1 Streptococcus pneumoniae is among the most commonly isolated serotype in invasive pneumococcal disease but is rarely found causing asymptomatic nasopharyngeal colonization. Compared to infection by other serotypes, infection caused by serotype 1 is more likely to be identified in young patients without comorbidities but is generally associated with a lower mortality. Empyema and extrapulmonary manifestations are common. Outbreaks of serotype 1 disease have been reported in closed communities and epidemics are particularly common in sub-Saharan Africa. The serotype 1 capsular polysaccharide is a zwitterionic structure that enables it to function as a T-cell dependent antigen under some circumstances, in contrast to other pneumococcal capsular polysaccharides that are T-cell independent antigens. There are also differences in the key virulence factor pneumolysin in some serotype 1 isolates. The clinical significance of these differences remains to be determined.
    Future Microbiology 01/2012; 7(1):33-46. DOI:10.2217/fmb.11.146 · 4.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Streptococcus pneumonaie is a diverse species causing invasive as well as localized infections that result in massive global morbidity and mortality. Strains vary markedly in pathogenic potential, but the molecular basis is obscured by the diversity and plasticity of the pneumococcal genome. In the present study, S. pneumoniae serotype 3 blood (n = 12) or ear (n = 13) isolates were multi-locus sequence typed (MLST) and assessed for biofilm formation and virulence phenotype. Blood and ear isolates exhibited similar MLST type distribution, but differed markedly in phenotype. Blood isolates formed robust biofilms only at pH 7.4, which was enhanced in Fe(III)-supplemented medium. Conversely, ear isolates formed biofilms only at pH 6.8, and Fe(III) was inhibitory. Biofilm formation paralleled luxS expression and genetic competence. In a mouse intranasal challenge model, blood isolates did not stably colonize the nasopharynx, but spread to the blood; none spread to the ear. Ear isolates colonized the nasopharynx at higher levels and also spread to the ear compartment in a significant proportion of animals; none caused bacteremia. Thus, pneumococci of the same serotype and MLST type exhibit distinct phenotypes in accordance with clinical site of isolation, indicative of stable niche-adaptation within a clonal lineage.
    Infection and immunity 12/2012; 81(2). DOI:10.1128/IAI.01033-12 · 3.73 Impact Factor
Show more