Complex sleep apnoea in congestive heart failure

Department of Cardiology, Heart and Diabetes Centre NRW, Ruhr University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
Thorax (Impact Factor: 8.29). 03/2011; 66(5):402-7. DOI: 10.1136/thx.2010.146522
Source: PubMed

ABSTRACT Sleep disordered breathing is common and of prognostic significance in patients with congestive heart failure (CHF). Complex sleep apnoea (complexSA) is defined as the emergence of central sleep apnoea during continuous positive airway pressure (CPAP) treatment in patients with obstructive sleep apnoea (OSA). This study aims to determine the prevalence and predictors for complexSA in patients with CHF with OSA, and to assess the effects of treatment with adaptive servoventilation.
192 patients with CHF (left ventricular ejection fraction (LVEF) ≤45%, New York Heart Association (NYHA) class ≥2) and OSA (apnoea-hypopnoea index (AHI) ≥15) were investigated using echocardiography, cardiopulmonary exercise testing, measurement of hyperoxic, hypercapnic ventilatory response, 6 min walk test and measurement of N-terminal pro-brain natriuretic peptide (NT-proBNP) prior to CPAP introduction. If patients demonstrated complexSA (AHI >15/h with <10% obstructive events) during CPAP titration, adaptive servoventilation was introduced and the investigations were repeated at 3 monthly follow-up visits.
ComplexSA developed in 34 patients (18%) during CPAP titration. After adjustment for demographic and cardiac parameters, measures of CO(2) sensitivity (higher hyperoxic, hypercapnic ventilatory response) were independently associated with complexSA. Patients using adaptive servoventilation had improved AHI, NYHA class, NT-proBNP concentration, LVEF, hyperoxic, hypercapnic ventilatory response, oxygen uptake during cardiopulmonary exercise testing and the relationship between minute ventilation and the rate of CO(2) elimination (VE/Vco(2) slope) at last individual follow-up (14±4 months).
There is a high prevalence of complexSA in patients with OSA and CHF, and those who develop complexSA have evidence of higher respiratory controller gain before application of CPAP. Treatment with adaptive servoventilation effectively suppressed complexSA and had positive effects on cardiac function and respiratory stability.

7 Reads
  • Source
    • "However, the prevalence of this syndrome is somewhat variable in part due to the heterogeneous populations being reported/studied and is significantly affected by factors such as narcotic use, BMI, and other comorbidities specially heart failure. The described sleep center prevalence ranges from 0.56% in the Westhoff study from Germany (excluded patients with BNP l > 100 pg/mL) [14] to 18% reported in series of patients with chronic heart failure and OSAS [15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Complex sleep apnea is the term used to describe a form of sleep disordered breathing in which repeated central apneas (>5/hour) persist or emerge when obstructive events are extinguished with positive airway pressure (PAP) and for which there is not a clear cause for the central apneas such as narcotics or systolic heart failure. The driving forces in the pathophysiology are felt to be ventilator instability associated oscillation in PaCO2 arterial partial pressure of Carbon Dioxide, continuous cositive airway pressure (CPAP) related increased CO2 carbon dioxide elimination, and activation of airway and pulmonary stretch receptors triggering these central apneas. The prevalence ranges from 0.56% to 18% with no clear predictive characteristics as compared to simple obstructive sleep apnea. Prognosis is similar to obstructive sleep apnea. The central apnea component in most patients on followup using CPAP therap, has resolved. For those with continued central apneas on simple CPAP therapy, other treatment options include bilevel PAP, adaptive servoventilation, permissive flow limitation and/or drugs.
    02/2014; 2014(1):798487. DOI:10.1155/2014/798487
  • Source
    • "ASV devices have been shown to be effective in controlling CompSAS activity. Bitter et al,32 in their research, offered ASV to all 34 patients with CompSAS, and the investigations were repeated at 3-monthly follow-up visits. Downloaded data from the device showed that the average AHI for the entire treatment period was 5.2 ± 7.1/h. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Complex sleep apnea syndrome (CompSAS) is a distinct form of sleep-disordered breathing characterized as central sleep apnea (CSA), and presents in obstructive sleep apnea (OSA) patients during initial treatment with a continuous positive airway pressure (CPAP) device. The mechanisms of why CompSAS occurs are not well understood, though we have a high loop gain theory that may help to explain it. It is still controversial regarding the prevalence and the clinical significance of CompSAS. Patients with CompSAS have clinical features similar to OSA, but they do exhibit breathing patterns like CSA. In most CompSAS cases, CSA events during initial CPAP titration are transient and they may disappear after continued CPAP use for 4~8 weeks or even longer. However, the poor initial experience of CompSAS patients with CPAP may not be avoided, and nonadherence with continued therapy may often result. Treatment options like adaptive servo-ventilation are available now that may rapidly resolve the disorder and relieve the symptoms of this disease with the potential of increasing early adherence to therapy. But these approaches are associated with more expensive and complicated devices. In this review, the definition, potential plausible mechanisms, clinical characteristics, and treatment approaches of CompSAS will be summarized.
    Patient Preference and Adherence 07/2013; 7:633-41. DOI:10.2147/PPA.S46626 · 1.68 Impact Factor
  • Source
    • "As a consequence of this variable etiologic background, several clinical risk factors for CompSAS among patients with OSA have been identified. CompSAS phenotype has been described in patients with congestive heart failure and Cheyne–Stokes breathing pattern [16], with up to 18 % of CHF patients in a recent study exhibiting CompSAS activity [17]. The presence of arterial hypertension and coronary artery disease has been associated with CompSAS activity in other studies [14, 16]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The definition of complex sleep apnea (CompSAS) encompasses patients with obstructive sleep apnea (OSA) who develop central apnea activity upon restitution of airway patency. Presence of arterial hypertension (HTN), coronary artery disease (CAD) and heart failure (HF) have been proposed as risk factors for CompSAS among OSA patients. Using our database of patients with CompSAS, we examined the prevalence of these risk factors and defined other clinical characteristics of patients with CompSAS. Methods: Through retrospective search of the database, we examined the medical and clinical characteristics of consecutive patients diagnosed with CompSAS between 11/1/2006 and 6/30/2011 at NorthShore University HealthSystem. Results: One hundred and fifty patients with CompSAS were identified. Among patients included in the study, 97 (64.7 %) had at least one risk factor for CompSAS, while 53 (35.3 %) did not have any of them. Prevalence of low left ventricular ejection fraction and hypocapnia were low. Therapeutic interventions consisted of several positive airway pressure therapies, mainly adaptive servo ventilation. A hundred and ten patients (73.3 %) complied with recommended therapy and improved clinically. Conclusions: Although most patients with CompSAS have cardiac comorbidities, about one third of patients do not have any risk factors of CompSAS prior to sleep testing. Further research on factors involved in development of CompSAS will allow for better tailoring of therapy to pathophysiology involved in an individual case.
    Sleep And Breathing 02/2013; 17(4). DOI:10.1007/s11325-013-0825-4 · 2.48 Impact Factor
Show more