The status of Tsukuba BNCT trial: BPA-based boron neutron capture therapy combined with X-ray irradiation.

Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai, Tsukuba, Japan.
Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture, industry and medicine (Impact Factor: 1.09). 02/2011; 69(12):1817-8. DOI: 10.1016/j.apradiso.2011.02.013
Source: PubMed

ABSTRACT The phase II trial has been prepared to assess the effectiveness of BPA (250 mg/kg)-based NCT combined with X-ray irradiation and temozolomide (75 mg/m(2)) for the treatment of newly diagnosed GBM. BPA uptake is determined by (18)F-BPA-PET and/or (11)C-MET-PET, and a tumor with the lesion to normal ratio of 2 or more is indicated for BNCT. The maximum normal brain point dose prescribed was limited to 13.0 Gy or less. Primary end point is overall survival.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The (9)Be(d,n)(10)B reaction was studied as an epithermal neutron source for brain tumor treatment through Boron Neutron Capture Therapy (BNCT). In BNCT, neutrons are classified according to their energies as thermal (<0.5 eV), epithermal (from 0.5 eV to 10 keV) or fast (>10 keV). For deep-seated tumors epithermal neutrons are needed. Since a fraction of the neutrons produced by this reaction are quite fast (up to 5-6 MeV, even for low-bombarding energies), an efficient beam shaping design is required. This task was carried out (1) by selecting the combinations of bombarding energy and target thickness that minimize the highest-energy neutron production; and (2) by the appropriate choice of the Beam Shaping Assembly (BSA) geometry, for each of the combinations found in (1). The BSA geometry was determined as the configuration that maximized the dose deliverable to the tumor in a 1 h treatment, within the constraints imposed by the healthy tissue dose adopted tolerance. Doses were calculated through the MCNP code. The highest dose deliverable to the tumor was found for an 8 μm target and a deuteron beam of 1.45 MeV. Tumor weighted doses ≥40 Gy can be delivered up to about 5 cm in depth, with a maximum value of 51 Gy at a depth of about 2 cm. This dose performance can be improved by relaxing the treatment time constraint and splitting the treatment into two 1-h sessions. These good treatment capabilities strengthen the prospects for a potential use of this reaction in BNCT.
    Physica Medica 07/2013; · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: (10)B-concentration ratios between human glioblastoma multiforme (U87MG), sarcoma (S3) and melanoma (MV3) xenografted in nu/nu mice and selected normal tissues were investigated to test for preferential (10)B-accumulation. Animals received BSH, BPA or both compounds sequentially. Mean (10)B-concentration ratios between tumor and normal tissues above 2 were found indicating therapeutic ratios. In addition to glioblastoma, brain metastases and soft tissue sarcoma appear to be promising targets for future BNCT research.
    Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture, industry and medicine 11/2013; · 1.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neutron therapy has two branches: Fast Neutron Therapy (FNT) and Boron Neutron Capture Therapy (BNCT). The mean neutron energies used for FNT range from 2 MeV to 25 MeV whereas the maximum energy for BNCT is about 10 keV. Neutron generators for FNT have been cyclotrons, accelerators and reactors, whereas BNCT is so far bound to reactors. Both therapies use the effects of high-LET radiation (secondary recoil protons and alpha particles, respectively) and can attack otherwise radioresistant tumours, however, with the hazard of adverse effects for irradiated healthy tissue.FNT has been administered to about 30,000 patients world-wide. From formerly 40 facilities, only eight are operational or stand-by today. The reasons for this development have been, on the one hand, related to technical and economical conditions; on the other hand, strong side effects and insufficient proof of clinical results in the early years as well as increasing competition with new clinical methods have reduced patient numbers. In fact, strict observations of indications, appropriate therapy-planning including low-LET radiation, and consequent treatment of side effects have lead to remarkable results in the meantime.BNCT initially was developed for the treatment of extremely aggressive forms of brain tumour, taking advantage of the action of the blood-brain-barrier which allows for a boronated compound to be selectively enriched in tumour cells. Meanwhile, also malignant melanoma (MM) and Head-and-Neck (H&T) tumours are treated because of their relative radioresistance. At present, epithermal beams with sufficient flux are available only at two facilities. Existing research reactors were indispensable in the development of BNCT, but are to be replaced by hospital-based epithermal neutron sources. Clinical results indicate significantly increased survival times, but the number of patients ever treated is still below 1,000.3D-dose calculation systems have been developed at several facilities and guarantee a high safety for both therapies, FNT and BNCT.
    Journal of Instrumentation 03/2012; 7(03). · 1.53 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014