Article

Characterization of genetically targeted neuron types in the zebrafish optic tectum.

Department of Physiology, University of California San Francisco San Francisco, CA, USA.
Frontiers in Neural Circuits (Impact Factor: 3.33). 01/2011; 5:1. DOI: 10.3389/fncir.2011.00001
Source: PubMed

ABSTRACT The optically transparent larval zebrafish is ideally suited for in vivo analyses of neural circuitry controlling visually guided behaviors. However, there is a lack of information regarding specific cell types in the major retinorecipient brain region of the fish, the optic tectum. Here we report the characterization of three previously unidentified tectal cell types that are specifically labeled by dlx5/6 enhancer elements. In vivo laser-scanning microscopy in conjunction with ex vivo array tomography revealed that these neurons differ in their morphologies, synaptic connectivity, and neurotransmitter phenotypes. The first type is an excitatory bistratified periventricular interneuron that forms a dendritic arbor in the retinorecipient stratum fibrosum et griseum superficiale (SFGS) and an axonal arbor in the stratum griseum centrale (SGC). The second type, a GABAergic non-stratified periventricular interneuron, extends a bushy arbor containing both dendrites and axons into the SGC and the deepest sublayers of the SFGS. The third type is a GABAergic periventricular projection neuron that extends a dendritic arbor into the SGC and a long axon to the torus semicircularis, medulla oblongata, and anterior hindbrain. Interestingly, the same axons form en passant synapses within the deepest neuropil layer of the tectum, the stratum album centrale. This approach revealed several novel aspects of tectal circuitry, including: (1) a glutamatergic mode of transmission from the superficial, retinorecipient neuropil layers to the deeper, output layers, (2) the presence of interneurons with mixed dendrite/axon arbors likely involved in local processing, and (3) a heretofore unknown GABAergic tectofugal projection to midbrain and hindbrain. These observations establish a framework for studying the morphological and functional differentiation of neural circuits in the zebrafish visual system.

0 Bookmarks
 · 
81 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Postmortem studies of synapses in human brain are problematic because of the axial resolution limit of light microscopy and the difficulty in preserving and analyzing ultrastructure with electron microscopy (EM). Array tomography (AT) overcomes these problems by embedding autopsy tissue in resin and cutting ribbons of ultrathin serial sections. Ribbons are imaged with immunofluorescence, allowing high-throughput imaging of tens of thousands of synapses to assess synapse density and protein composition. The protocol takes ∼3 d per case, excluding image analysis, which is done at the end of the study. Parallel processing for transmission electron microscopy (TEM) using a protocol modified to preserve the structure in human samples allows complementary ultrastructural studies. Incorporation of AT and TEM into brain banking is a potent way of phenotyping synapses in well-characterized clinical cohorts in order to develop clinicopathological correlations at the synapse level. This will be important for research in neurodegenerative disease, developmental disease and psychiatric illness.
    Nature Protocol 06/2013; 8(7):1366-1380. · 8.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic connections between neurons form the basis for perception and behavior. Synapses are often clustered in space, forming stereotyped layers. In the retina and optic tectum, multiple such synaptic laminae are stacked on top of each other, giving rise to stratified neuropil regions in which each layer combines synapses responsive to a particular sensory feature. Recently, several cellular and molecular mechanisms that underlie the development of multilaminar arrays of synapses have been discovered. These mechanisms include neurite guidance and cell-cell recognition. Molecules of the Slit, Semaphorin, Netrin, and Hedgehog families, binding to their matching receptors, bring axons and dendrites into spatial register. These guidance cues may diffuse over short distances or bind to sheets of extracellular matrix, thus conditioning the local extracellular milieu, or are presented on the surface of cells bordering the future neuropil. In addition, mutual recognition of axons and dendrites through adhesion molecules with immunoglobulin domains ensures cell type-specific connections within a given layer. Thus, an elaborate genetic program assembles the parallel processing channels that underlie visual perception.
    Annual Review of Cell and Developmental Biology 10/2013; 29:385-416. · 17.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ethanol (EtOH) and its metabolite, acetaldehyde (ALD), induce deleterious effects on central nervous system (CNS). Here we investigate the in vitro toxicity of EtOH and ALD (concentrations of 0.25%, 0.5%, and 1%) in zebrafish brain structures [telencephalon (TE), opticum tectum (OT), and cerebellum (CE)] by measuring the functionality of glutamate transporters, MTT reduction, and extracellular LDH activity. Both molecules decreased the activity of the Na(+)-dependent glutamate transporters in all brain structures. The strongest glutamate uptake inhibition after EtOH exposure was 58% (TE-1%), and after ALD, 91% (CE-1%). The results of MTT assay and LDH released demonstrated that the actions of EtOH and its metabolite are concentration and structure-dependent, in which ALD was more toxic than EtOH. In summary, our findings demonstrate a differential toxicity in vitro of EtOH and ALD in zebrafish brain structures, which can involve changes on glutamatergic parameters. We suggest that this species may be an interesting model for assessing the toxicological actions of alcohol and its metabolite in CNS.
    Toxicology in Vitro 03/2014; · 2.65 Impact Factor

Full-text (2 Sources)

View
25 Downloads
Available from
May 21, 2014