The tumorigenicity of human embryonic and induced pluripotent stem cells.

Stem Cell Unit, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
Nature Reviews Cancer (Impact Factor: 29.54). 03/2011; 11(4):268-77. DOI: 10.1038/nrc3034
Source: PubMed

ABSTRACT The unique abilities of human pluripotent stem cells to self-renew and to differentiate into cells of the three germ layers make them an invaluable tool for the future of regenerative medicine. However, the same properties also make them tumorigenic, and therefore hinder their clinical application. Hence, the tumorigenicity of human embryonic stem cells (HESCs) has been extensively studied. Until recently, it was assumed that human induced pluripotent stem cells (HiPSCs) would behave like their embryonic counterparts in respect to their tumorigenicity. However, a rapidly accumulating body of evidence suggests that there are important genetic and epigenetic differences between these two cell types, which seem to influence their tumorigenicity.


Available from: Uri ben-david, May 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously characterized human neuronal progenitor cells (hNP) that can adopt a retinal ganglion cell (RGC)-like morphology within the RGC and nerve fiber layers of the retina. In an effort to determine whether hNPs could be used a candidate cells for targeted delivery of neurotrophic factors (NTFs), we evaluated whether hNPs transfected with an vector that expresses IGF-1 in the form of a fusion protein with tdTomato (TD), would increase RGC survival in vitro and confer neuroprotective effects in a mouse model of glaucoma. RGCs co-cultured with hNPIGF-TD cells displayed enhanced survival, and increased neurite extension and branching as compared to hNPTD or untransfected hNP cells. Application of various IGF-1 signaling blockers or IGF-1 receptor antagonists abrogated these effects. In vivo, using a model of glaucoma we showed that IOP elevation led to reductions in retinal RGC count. In this model, evaluation of retinal flatmounts and optic nerve cross sections indicated that only hNPIGF-TD cells effectively reduced RGC death and showed a trend to improve optic nerve axonal loss. RT-PCR analysis of retina lysates over time showed that the neurotrophic effects of IGF-1 were also attributed to down-regulation of inflammatory and to some extent, angiogenic pathways. This study shows that neuronal progenitor cells that hone into the RGC and nerve fiber layers may be used as vehicles for local production and delivery of a desired NTF. Transplantation of hNPIGF-TD cells improves RGC survival in vitro and protects against RGC loss in a rodent model of glaucoma. Our findings have provided experimental evidence and form the basis for applying cell-based strategies for local delivery of NTFs into the retina. Application of cell-based delivery may be extended to other disease conditions beyond glaucoma.
    PLoS ONE 04/2015; 10(4):e0125695. DOI:10.1371/journal.pone.0125695 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human somatic stem cells with neural differentiation potential can be valuable for developing cell-based therapies, including treatment of birth-related defects, while avoiding issues associated with cell reprogramming. Precisely defining the "identity" and differentiation potential of somatic stem cells from different sources, has proven difficult, given differences in sets of specific markers, protocols used and lack of side-by-side characterization of these cells in different studies. Therefore, we set to compare expression of mesenchymal and neural markers in human umbilical cord-derived mesenchymal stem cells (UC-MSCs), paediatric adipose-derived stem cells (p-ADSCs) in parallel with human neural stem cells (NSCs). We show that UC-MSCs at a basal level express mesenchymal and so-called “neural” markers, similar to that we previously reported for the p-ADSCs. All somatic stem cell populations studied, independently from tissue and patient of origin, displayed a remarkably similar expression of surface markers, with the main difference being the restricted expression of CD133 and CD34 to NSCs. Expression of certain surface and neural markers was affected by the expansion medium used. As predicted, UC-MSCs and p-ADSCs demonstrated tri-mesenchymal lineage differentiation potential, though p-ADSCs display superior chondrogenic differentiation capability. UC-MSCs and p-ADSCs responded also to neurogenic induction by up-regulating neuronal markers, but crucially they appeared morphologically immature when compared with differentiated NSCs. This highlights the need for further investigation into the use of these cells for neural therapies. Crucially, this study demonstrates the lack of simple means to distinguish between different cell types and the effect of culture conditions on their phenotype, and indicates that a more extensive set of markers should be used for somatic stem cell characterization, especially when developing therapeutic approaches.
    Stem Cell Research 04/2015; 11(1). DOI:10.1016/j.scr.2015.04.003 · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Any queries or remarks that have arisen during the processing of your manuscript are listed below and are highlighted by flags in the proof. (AU indicates author queries; ED indicates editor queries; and TS/TY indicates typesetter queries.) Please check your proof carefully and answer all AU queries. Mark all corrections and query answers at the appropriate place in the proof (e.g., by using on-screen annotations in the PDF file overview-of-the-publishing-process) or compile them in a separate list, and tick off below to indicate that you have answered the query. Please return your input as instructed by the project manager. Location in article Query / remark No Queries MicroRNA in Regenerative Medicine. http://dx. To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s)