Article

MK-1775, a Potent Wee1 Inhibitor, Synergizes with Gemcitabine to Achieve Tumor Regressions, Selectively in p53-Deficient Pancreatic Cancer Xenografts

Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Clinical Cancer Research (Impact Factor: 8.19). 03/2011; 17(9):2799-806. DOI: 10.1158/1078-0432.CCR-10-2580
Source: PubMed

ABSTRACT Investigate the efficacy and pharmacodynamic effects of MK-1775, a potent Wee1 inhibitor, in both monotherapy and in combination with gemcitabine (GEM) using a panel of p53-deficient and p53 wild-type human pancreatic cancer xenografts.
Nine individual patient-derived pancreatic cancer xenografts (6 with p53-deficient and 3 with p53 wild-type status) from the PancXenoBank collection at Johns Hopkins were treated with MK-1775, GEM, or GEM followed 24 hour later by MK-1775, for 4 weeks. Tumor growth rate/regressions were calculated on day 28. Target modulation was assessed by Western blotting and immunohistochemistry.
MK-1775 treatment led to the inhibition of Wee1 kinase and reduced inhibitory phosphorylation of its substrate Cdc2. MK-1775, when dosed with GEM, abrogated the checkpoint arrest to promote mitotic entry and facilitated tumor cell death as compared to control and GEM-treated tumors. MK-1775 monotherapy did not induce tumor regressions. However, the combination of GEM with MK-1775 produced robust antitumor activity and remarkably enhanced tumor regression response (4.01-fold) compared to GEM treatment in p53-deficient tumors. Tumor regrowth curves plotted after the drug treatment period suggest that the effect of the combination therapy is longer-lasting than that of GEM. None of the agents produced tumor regressions in p53 wild-type xenografts.
These results indicate that MK-1775 selectively synergizes with GEM to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts.

0 Followers
 · 
123 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This chapter describes the approaches taken in the development of the first PARP inhibitor to enter into clinical trial, AG-014699. We describe the general principles of crystal-based drug design, the purification, and crystallization of the PARP-1 catalytic domain, and how this approach was used to develop highly potent PARP inhibitors based on the nicotinamide pharmacophore. Several methods have been used to determine the inhibitory potency of designed inhibitors in cell-free and whole cell assays; each is described with reference to its advantages and disadvantages.
    Methods in molecular biology (Clifton, N.J.) 01/2011; 780:463-89. DOI:10.1007/978-1-61779-270-0_28 · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acinar cell carcinoma is a rare non-ductal neoplasm of the pancreas with poorly defined molecular genetic features. Recently, biallelic inactivation of LKB1 was described in an acinar cell carcinoma of a Peutz-Jeghers patient carrying a heterozygous germline LKB1 mutation, and inhibition of mTOR signaling resulted in partial remission of the tumor. To explore the potential of mTOR inhibitors in sporadic acinar cell carcinoma, the LKB1 gene was investigated in five sporadic acinar cell carcinomas by sequence analysis, methylation analysis and mRNA expression. In addition, microsatellite instability and methylation of a number of tumor suppressor genes were investigated and KRAS, TP53, CDKN1A, SMAD4 and CTNNB1 were studied by mutation analysis and immunohistochemistry. No mutations, deletions or promoter hypermethylation of LKB1 were found in any of the sporadic acinar cell carcinomas, and mRNA expression of LKB1 was not altered. Amplifications at chromosome 20q and 19p were found in 100 and 80% of the cases, respectively. In addition, hypermethylation of one or more tumor suppressor genes was found in 80% of cases. One case harbored a TP53 mutation, and expression of SMAD4 and CTNNB1 was altered in one case each. No KRAS mutations or microsatellite instability were found. To conclude, no evidence for a role for LKB1 in tumorigenesis of sporadic pancreatic acinar cell carcinoma was found. However, copy number variations and hypermethylation were found in a majority of cases. Molecular pathways involved in acinar cell carcinoma-tumorigenesis differ from those involved in ductal pancreatic neoplasms. Further studies are needed to increase our understanding of molecular pathogenesis of acinar cell carcinoma, which may eventually result in development of new therapeutic targets.Keywords: acinar cell carcinoma; copy number variation; LKB1/STK11; methylation; mTOR; pancreas; Peutz-Jeghers syndrome
    Modern Pathology 05/2011; 24(9):1229-1236. DOI:10.1038/modpathol.2011.83 · 6.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: WEE1 kinase is a key molecule in maintaining G₂-cell-cycle checkpoint arrest for premitotic DNA repair. Whereas normal cells repair damaged DNA during G₁-arrest, cancer cells often have a deficient G₁-arrest and largely depend on G₂-arrest. The molecular switch for the G₂-M transition is held by WEE1 and is pushed forward by CDC25. WEE1 is overexpressed in various cancer types, including glioblastoma and breast cancer. Preclinical studies with cancer cell lines and animal models showed decreased cancer cell viability, reduced tumor burden, and improved survival after WEE1 inhibition by siRNA or small molecule inhibitors, which is enhanced by combination with conventional DNA-damaging therapy, such as radiotherapy and/or cytostatics. Mitotic catastrophe results from premature entry into mitosis with unrepaired lethal DNA damage. As such, cancer cells become sensitized to conventional therapy by WEE1 inhibition, in particular those with insufficient G₁-arrest due to deficient p53 signaling, like glioblastoma cells. One WEE1 inhibitor has now reached clinical phase I studies. Dose-limiting toxicity consisted of hematologic events, nausea and/or vomiting, and fatigue. The combination of DNA-damaging cancer therapy with WEE1 inhibition seems to be a rational approach to push cancer cells in mitotic catastrophe. Its safety and efficacy are being evaluated in clinical studies.
    Clinical Cancer Research 06/2011; 17(13):4200-7. DOI:10.1158/1078-0432.CCR-10-2537 · 8.19 Impact Factor
Show more

Preview

Download
0 Downloads
Available from