Dynamic association of tau with neuronal membranes is regulated by phosphorylation.

King's College London, MRC Centre for Neurodegeneration Research, Department of Neuroscience, Institute of Psychiatry, London, UK.
Neurobiology of aging (Impact Factor: 5.94). 03/2011; 33(2):431.e27-38. DOI: 10.1016/j.neurobiolaging.2011.01.005
Source: PubMed

ABSTRACT Tau is an abundant cytosolic protein which regulates cytoskeletal stability by associating with microtubules in a phosphorylation-dependent manner. We have found a significant proportion of tau is located in the membrane fraction of rat cortical neurons and is dephosphorylated, at least at Tau-1 (Ser199/Ser202), AT8 (Ser199/Ser202/Thr205) and PHF-1 (Ser396/Ser404) epitopes. Inhibition of tau kinases casein kinase 1 (CK1) or glycogen synthase kinase-3 decreased tau phosphorylation and significantly increased amounts of tau in the membrane fraction. Mutation of serine/threonine residues to glutamate to mimic phosphorylation in the N-terminal, but not C-terminal, region of tau prevented its membrane localization in transfected cells, demonstrating that the phosphorylation state of tau directly impacts its localization. Inhibiting CK1 in neurons lacking the tyrosine kinase fyn also induced tau dephosphorylation but did not affect its membrane association. Furthermore, inhibition of CK1 increased binding of neuronal tau to the fyn-SH3 domain. We conclude that trafficking of tau between the cytosol and the neuronal membrane is dynamically regulated by tau phosphorylation through a mechanism dependent on fyn expression.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Primary objective: Following stroke, hypothermia is reported to reduce both cellular and extracellular damage. This study aimed to examine the effects of focal mild hypothermia on proteins associated with both extracellular (matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of MMP-9 (TIMP-1)) and cellular damage (Tau-1 and β-amyloid precursor protein (β-APP)) to characterize the protective effects of hypothermia. Methods and procedures: Male Wistar rats received ischaemic damage using a transient, focal ischaemia/reperfusion model. Afterwards, one group (HT) received 6 hours of focal mild hypothermia (33 °C) applied to the head, while another remained at normal temperature (NT). The brains were collected at 6, 12, 24, 48 and 72 hours after hypothermia to measure infarct volume ratio and to detect cells immunopositive for MMP-9, TIMP-1, Tau-1 and β-APP, while neurological deficits were examined separately after 2 weeks. Main outcomes and results: Focal mild hypothermia had no effect on infarct volume ratio but expression of MMP-9, TIMP-1 Tau-1 and β-APP was decreased. Furthermore, neurological function in the HT group was better than in the NT group. Conclusions: Focal mild hypothermia has protective effects on cerebral ischaemia-reperfusion injury characterized by decreased expression of MMP-9, TIMP-1, Tau-1 and β-APP, along with improvement of neurological function despite no changes in infarct volume.
    Brain Injury 07/2013; · 1.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tau is a microtubule-associated protein that aggregates in neurodegenerative disorders known as tauopathies. Recently, studies have suggested that Tau may be secreted and play a role in neural network signalling. However, once deregulated, secreted Tau may also participate in the spreading of Tau pathology in hierarchical pathways of neurodegeneration. The mechanisms underlying neuron-to-neuron Tau transfer are still unknown; given the known role of extra-cellular vesicles in cell-to-cell communication, we wondered whether these vesicles could carry secreted Tau. We found, among vesicles, that Tau is predominately secreted in ectosomes, which are plasma membrane-originating vesicles, and when it accumulates, the exosomal pathway is activated.
    PLoS ONE 01/2014; 9(6):e100760. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulation and aggregation of the microtubule-associated protein tau are a pathological hallmark of neurodegenerative disorders such as Alzheimer's disease (AD). In AD, tau becomes abnormally phosphorylated and forms inclusions throughout the brain, starting in the entorhinal cortex and progressively affecting additional brain regions as the disease progresses. Formation of these inclusions is thought to lead to synapse loss and cell death. Tau is also found in the cerebrospinal fluid (CSF), and elevated levels are a biomarker for AD. Until recently, it was thought that the presence of tau in the CSF was due to the passive release of aggregated tau from dead or dying tangle-bearing neurons. However, accumulating evidence from different AD model systems suggests that tau is actively secreted and transferred between synaptically connected neurons. Transgenic mouse lines with localized expression of aggregating human tau in the entorhinal cortex have demonstrated that, as these animals age, tau becomes mislocalized from axons to cell bodies and dendrites and that human tau-positive aggregates form first in the entorhinal cortex and later in downstream projection targets. Numerous in vitro and in vivo studies have provided insight into the mechanisms by which tau may be released and internalized by neurons and have started to provide insight into how tau pathology may spread in AD. In this review, we discuss the evidence for regulated tau release and its specific uptake by neurons. Furthermore, we identify possible therapeutic targets for preventing the propagation of tau pathology, as inhibition of tau transfer may restrict development of tau tangles in a small subset of neurons affected in early stages of AD and therefore prevent widespread neuron loss and cognitive dysfunction associated with later stages of the disease.
    Alzheimer's Research and Therapy 10/2013; 5(5):49. · 4.39 Impact Factor