Article

C. elegans homologs of insect clock proteins: a tale of many stories.

Research Group of Functional Genomics and Proteomics, K.U. Leuven, Leuven, Belgium.
Annals of the New York Academy of Sciences (Impact Factor: 4.38). 03/2011; 1220:137-48. DOI: 10.1111/j.1749-6632.2010.05927.x
Source: PubMed

ABSTRACT As a consequence of the Earth's axial rotation, organisms display daily recurring rhythms in behavior and biochemical properties, such as hormone titers. The neuronal system controlling such changes is best studied in the fruit fly Drosophila melanogaster. In the nematode worm Caenorhabditis elegans, most homologs of these genes function in the heterochronic pathway controlling the (timing of) developmental events. Recent data indicate that in the worm at least one of the genes involved in developmental timing is also active in circadian rhythm control, thereby opening up new perspectives on a central (neuronal) timer interfering with many processes. Also, new neuropeptidergic clock homologs have been identified in nematodes, supporting the idea of a broad range of clock-regulated targets. We will describe the current knowledge on homologous clock genes in C. elegans with a focus on the recently discovered pigment dispersing factor gene homologs. Similarities between developmental and daily timing are discussed.

0 Bookmarks
 · 
150 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Like most organisms, the nematode Caenorhabditis elegans relies heavily on neuropeptidergic signaling. This tiny animal represents a suitable model system to study neuropeptidergic signaling networks with single cell resolution due to the availability of powerful molecular and genetic tools. The availability of the worm's complete genome sequence allows researchers to browse through it, uncovering putative neuropeptides and their cognate G protein-coupled receptors (GPCRs). Many predictions have been made about the number of C. elegans neuropeptide GPCRs. In this review, we report the state of the art of both verified as well as predicted C. elegans neuropeptide GPCRs. The predicted neuropeptide GPCRs are incorporated into the receptor classification system based on their resemblance to orthologous GPCRs in insects and vertebrates. Appointing the natural ligand(s) to each predicted neuropeptide GPCR (receptor deorphanization) is a crucial step during characterization. The development of deorphanization strategies resulted in a significant increase in the knowledge of neuropeptidergic signaling in C. elegans. Complementary localization and functional studies demonstrate that neuropeptides and their GPCRs represent a rich potential source of behavioral variability in C. elegans. Here, we review all neuropeptidergic signaling pathways that so far have been functionally characterized in C. elegans.
    Frontiers in Endocrinology 01/2012; 3:167.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Circadian clocks provide a temporal structure to processes from gene expression to behavior in organisms from all phyla. Most clocks are synchronized to the environment by alternations of light and dark. However, many organisms experience only muted daily environmental cycles due to their lightless spatial niches (e.g., caves or soil). This has led to speculation that they may dispense with the daily clock. However, recent reports contradict this notion, showing various behavioral and molecular rhythms in Caenorhabditis elegans and in blind cave fish. Based on the ecology of nematodes, we applied low-amplitude temperature cycles to synchronize populations of animals through development. This entrainment regime reveals rhythms on multiple levels: in olfactory cued behavior, in RNA and protein abundance, and in the oxidation state of a broadly conserved peroxiredoxin protein. Our work links the nematode clock with that of other clock model systems; it also emphasizes the importance of daily rhythms in sensory functions that are likely to impact on organism fitness and population structure.
    Proceedings of the National Academy of Sciences 11/2012; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Melatonin influences circadian rhythms and seasonal behavioral changes in vertebrates; it is synthesized from serotonin by N-acetylation by arylalkylamine N-acetyltransferase (AA-NAT) and O-methylation by N-acetylserotonin methyltransferase. However, its physiology and function in invertebrate models are less understood. In this work, we studied daily variations in melatonin synthesis and AA-NAT activity in the nematode Caenorhabditis elegans. Under light-dark conditions (LD), a rhythmic pattern of melatonin levels was observed, with higher levels toward the middle of the night, peaking at zeitgeber time (ZT) 18, and with a minimum value around ZT0-6. AA-NAT activity showed a diurnal and circadian fluctuation with higher levels of activity during the early night, both under LD and constant darkness conditions. A peak was found around ZT12 and circadian time (CT) 12. In addition, we investigated whether this nocturnal AA-NAT activity is inhibited by light. Our results show that both white and blue light pulses significantly inhibited AA-NAT activity at ZT18. This work demonstrates the daily fluctuation of melatonin synthesis and AA-NAT activity in the adult nematode C. elegans. In summary, this study takes additional advantage of an extremely useful invertebrate model system, which has only recently been exploited for circadian studies.
    Journal of Pineal Research 09/2011; 53(1):38-46. · 7.30 Impact Factor

Full-text

View
82 Downloads
Available from
Jun 6, 2014