Article

Electrochemical Multiwalled Carbon Nanotube Filter for Viral and Bacterial Removal and Inactivation

Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06520-8286, United States.
Environmental Science & Technology (Impact Factor: 5.48). 03/2011; 45(8):3672-9. DOI: 10.1021/es2000062
Source: PubMed

ABSTRACT Nanotechnology has potential to offer solutions to problems facing the developing world. Here, we demonstrate the efficacy of an anodic multiwalled carbon nanotube (MWNT) microfilter toward the removal and inactivation of viruses (MS2) and bacteria (E. coli). In the absence of electrolysis, the MWNT filter is effective for complete removal of bacteria by sieving and multilog removal of viruses by depth-filtration. Concomitant electrolysis during filtration results in significantly increased inactivation of influent bacteria and viruses. At applied potentials of 2 and 3 V, the electrochemical MWNT filter reduced the number of bacteria and viruses in the effluent to below the limit of detection. Application of 2 and 3 V for 30 s postfiltration inactivated >75% of the sieved bacteria and >99.6% of the adsorbed viruses. Electrolyte concentration and composition had no correlation to electrochemical inactivation consistent with a direct oxidation mechanism at the MWNT filter surface. Potential dependent dye oxidation and E. coli morphological changes also support a direct oxidation mechanism. Advantages of the electrochemical MWNT filter for pathogen removal and inactivation and potential for point-of-use drinking water treatment are discussed.

Download full-text

Full-text

Available from: Jessica D Schiffman, Jun 27, 2015
0 Followers
 · 
294 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathogenic viral infections are an international public health concern, and viral disinfection has received increasing attention. Electrochemical treatment has been used for treatment of water contaminated by bacteria for several decades, and although in recent years several reports have investigated viral inactivation kinetics, the mode of action of viral inactivation by electrochemical treatment remains unclear. Here, we demonstrated the inactivation of feline calicivirus (FCV), a surrogate for human noroviruses, by electrochemical treatment in a developed flow-cell equipped with a screen-printed electrode. The viral infectivity titer was reduced by over 5 orders of magnitude after 15 min of treatment at 0.9 V vs. Ag/AgCl. Proteomic study of electrochemically inactivated virus revealed oxidation of peptides located in the viral particles; oxidation was not observed in the non-treated sample. Furthermore, transmission electron microscopy revealed that viral particles in the treated sample had irregular structures. These results suggest that electrochemical treatment inactivates FCV via oxidation of peptides in the structural region, causing structural deformation of virus particles. This first report of viral protein damage through electrochemical treatment will contribute to broadening the understanding of viral inactivation mechanisms.
    Journal of Hazardous Materials 10/2014; DOI:10.1016/j.jhazmat.2014.09.049 · 4.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the electrooxidative carbon nanotube (CNT) filtration of sorptive methyl orange (MO) and non-sorptive ferrocyanide was investigated by both experiment and numerical simulation. The two-dimensional numerical model includes target molecule; mass transport, adsorption, and electron transfer and product desorption. For MO, the model was calibrated with experimental reaction rates from the mass- and electron-transfer limited regimes and accurately predicted effluent concentrations over a much larger range of conditions. For ferrocyanide, five CNT electrodes of various specific surface area and surface oxygen content were utilized and a similar single reaction site model to MO accurately predicted kinetics at low anode potentials while a two-site model was necessary at higher potentials yielding insight into the CNT reactive sites. For example, at low anode potentials (60.2 V), the kinetics have a linear correlation with CNT surface area indicating the sp2 conjugated sidewall sites are dominant. In contrast, at higher anode potentials (P0.3 V), the kinetics were significantly greater than expected from CNT surface area and the differential kinetics have a linear correlation with the CNT surface oxygen content indicating the CNT tips were also electroactive. The spatial distribution of internal electrode mass transport and surface reactivity is discussed.
    Carbon 09/2014; 80:651-664. DOI:10.1016/j.carbon.2014.09.009 · 6.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Membrane fouling is the major problem during the practical application of membrane separation processes in industry and water treatment. Therefore a search for novel efficient methods of membrane cleaning is currently of crucial importance for membrane-based technologies. The paper describes a new method of membrane cleaning, which is based on periodic electrolysis using a novel electrically conductive membrane to remove/prevent membrane fouling. The membrane consists of a thin electrically conductive layer of multi-walled carbon nanotubes (MWCNTs) deposited on the membrane׳s surface. The deposited MWCNTs allow the membrane to function as a cathode in an electrochemical system that includes the electrically conductive membrane, the salt water as an electrolyte and a stainless steel counter anode. The efficiency of the cleaning procedure in the flux recovery has been proved with typical bio- and inorganic membrane foulants such as CaCO3 and yeast suspensions. The cleaning mechanism during the electrolysis process is explained by the evolution of gases forming micro-bubbles at the membrane surface which remove the foulant material out from the membrane. The proposed method enables in situ membrane self-cleaning, thus providing a non-destructive, continuous and renewable approach for the mitigation of the different types of membrane fouling.
    Journal of Membrane Science 08/2014; 471. DOI:10.1016/j.memsci.2014.08.017 · 4.91 Impact Factor