Preparation, characterization, pharmacokinetics, and bioactivity of honokiol-in-hydroxypropyl-β-cyclodextrin-in-liposome.

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
Journal of Pharmaceutical Sciences (Impact Factor: 3.13). 03/2011; 100(8):3357-64. DOI: 10.1002/jps.22534
Source: PubMed

ABSTRACT Entrapping inclusion complexes in liposomes has been proposed to increase the entrapment efficiency (EE) and stability of liposomes compared with conventional liposomes. In the present study, a stable honokiol-in-hydroxypropyl-β-cyclodextrin-in-liposome (honokiol-in-HP-β-CD-in-liposome) was developed as honokiol delivery system by a novel method. The final molar ratio of honokiol/HP-β-CD/lipid was selected as 1:2:2. The mean particle size was 123.5 nm, the zeta potential was -25.6 mV, and the EE was 91.09 ± 2.76%. The release profile in vitro demonstrated that honokiol is released from honokiol-in-HP-β-CD-in-liposome with a sustained and slow speed. Crystallographic study indicated that honokiol was first bound within HP-β-CD and then the inclusion complex was encapsulated within liposomes. Honokiol-in-HP-β-CD-in-liposome without freeze dry kept stable for at least 6 months at 4°C. Pharmacokinetic study revealed that honokiol-in-HP-β-CD-in-liposome significantly retarded the elimination and prolonged the residence time in circulating system. The data of bioactivity showed that honokiol-in-HP-β-CD-in-liposome remained similar antiproliferative activity in A549 and HepG2 tumor cells compared to free honokiol. These results suggested that we had successfully prepared honokiol-in-HP-β-CD-in-liposome. The novel honokiol formulation was easy to push industrialization forward and might be a potential carrier for honokiol delivery in tumor chemotherapy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Recently, the entrapment of hydrophobic drugs in the form of water-soluble drug-cyclodextrin (CD) complex in liposomes has been investigated as a new strategy to combine the relative advantages of CDs and liposomes into one system, namely drug-in-CD-in-liposome (DCL) systems. Areas covered: For DCLs preparation, an overall understanding of the interaction between CDs and lipid components of liposomes is necessary and valuable. The present article reviews the preparation, characterization and application of DCLs, especially as antitumor or transdermal carriers. Double-loading technique, an interesting strategy to control release and increase drug-loading capacity, is also discussed. Expert opinion: DCL approach can be useful in increasing drug solubility and vesicles stability, in controlling the in vivo fate of hydrophobic drugs and in avoiding burst release of drug from the vesicles. To obtain stable DCL, the CDs should have a higher affinity to drug molecules compared with liposomal membrane lipids. DCLs prepared by double-loading technique seem to be a suitable targeted drug delivery system because they have a fast onset action with prolonged drug release process and the significantly enhanced drug-loading capacity. In particular, DCLs are suitable for the delivery of hydrophobic drugs which also possess volatility.
    Expert Opinion on Drug Delivery 02/2014; · 4.87 Impact Factor