Actinomycetospora iriomotensis sp. nov., a novel actinomycete isolated from a lichen sample.

Division of Applied Biological Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan.
The Journal of Antibiotics (Impact Factor: 2.04). 03/2011; 64(4):289-92. DOI: 10.1038/ja.2011.15
Source: PubMed

ABSTRACT An actinomycete strain, IR73-Li102(T), was isolated from a lichen sample obtained from Iriomote Island, Japan, and subsequently characterized using a polyphasic approach. Comparative 16S rRNA gene sequence analysis revealed that strain IR73-Li102(T) had the highest sequence similarities with Actinomycetospora chiangmaiensis YIM 0006(T) (98.3%), A. corticola 014-5(T) (98.1%) and A. rishiriensis RI109-Li102(T) (98.0%). However, DNA-DNA hybridization assays, as well as physiological and biochemical analyzes, showed that strain IR73-Li102(T) could be clearly differentiated from its closest phylogenetic relatives. The strain contained meso-diaminopimelic acid, and arabinose and galactose were present in whole-cell hydrolysates. The predominant menaquinone was MK-8(H(4)), and the diagnostic phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and diphosphatidylglycerol. The major cellular fatty acid was iso-C(16:0) (58%). The chemotaxonomic properties of strain IR73-Li102(T) were consistent with those shared by members of the genus Actinomycetospora. On the basis of the phenotypic features and DNA-DNA hybridization data, strain IR73-Li102(T) (= NBRC 106365(T) = KCTC 19783(T)) represents a novel species of the genus Actinomycetospora, for which the name Actinomycetospora iriomotensis sp. nov. is proposed.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel actinomycete, designated strain NEAU-st4(T), was isolated from a soil sample collected from Shaanxi province, Northwest China and characterized using a polyphasic approach. 16S rRNA gene sequence analysis revealed that strain NEAU-st4(T) has the highest sequence similarities with Actinomycetospora rishiriensis RI109-Li102(T) (99.4 %), Actinomycetospora corticicola 014-5(T) (99.1 %), Actinomycetospora chiangmaiensis YIM 0006(T) (98.8 %) and Actinomycetospora iriomotensis IR73-Li102(T) (98.2 %). However, the low level of DNA-DNA relatedness differentiated strain NEAU-st4(T) from its closest phylogenetic neighbours. The main chemotaxonomic properties of strain NEAU-st4(T), such as the diamino acid of the peptidoglycan, the whole-cell hydrolysates, the predominant menaquinones and the phospholipid profile, supported its classification within the genus Actinomycetospora. The distinctive morphology of this strain compared with that of other members in the genus Actinomycetospora is the formation of sporangia directly on the substrate hyphae. Phenotypic and genotypic differences also allowed the distinction of the strain from closely related species. Consequently, strain NEAU-st4(T) represents a new species of the genus Actinomycetospora, for which the name Actinomycetospora atypica sp. nov. is proposed. The type strain is NEAU-st4(T) (=CGMCC 4.7093(T) = DSM 45873(T)).
    Antonie van Leeuwenhoek 02/2014; DOI:10.1007/s10482-014-0143-2 · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A renewed interest in the development of new antimicrobial agents is urgently needed to combat the increasing number of antibiotic-resistant strains of pathogenic microorganisms. Actinomycetes continue to be the mainstream supplier of antibiotics used in industry. The likelihood of discovering a new compound with novel chemical structure can be increased with intensive efforts in isolating and screening of rare genera of microorganisms to include in natural-product-screening collections. An unexpected variety of rare actinomycetes is now being isolated worldwide from previously uninvestigated diverse natural habitats, using different selective isolation methods. These isolation efforts include methods to enhance growth (enrichment) of rare actinomycetes, and eliminate unwanted microorganisms (pretreatment). To speed up the strain isolation process, knowledge about the distribution of such unexploited groups of microorganisms must also be augmented. This is a summary of using these microorganisms as new potential biological resources, and a review of almost all of the selective isolation methods, including pretreatment and enrichment techniques that have been developed to date for the isolation of rare actinomycetes.
    Critical Reviews in Microbiology 08/2012; DOI:10.3109/1040841X.2012.709819 · 6.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A total of 110 culturable actinobacteria associated with seagrass (Thalassia hemprichii) were isolated using six different culture media, and their bioactivity potentials were analysed based on their genetic background on polyketide synthetase (PKS) and nonribosomal peptide synthetase (NRPS) gene sequences. Though the using of RFLP technique for sequencing and phylogenetic analysis, these selected 33 culturable isolates identified as belonging to ten genera of actinobacteria including Streptomyces, Micromonospora, Saccharomonospora, Mycobacterium, Actinomycetospora, Nonomuraea, Verrucosispora, Nocardiopsis, Microbacterium and Glycomyces. Four of the strains were unable to be assigned to currently known species and might be candidates of novel species. To our knowledge, this is the first report about culturable actinobacteria associated with seagrass and the isolate classified as Verrucosispora was first recorded to be isolated from plant. Most of the isolates harbor NRPS and PKS genes, which might indicate that these strains have great potential in production of bioactive natural compounds.