Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress

Departments of Cancer Biology, Pediatrics, and Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
Aging (Impact Factor: 4.89). 02/2011; 3(2):102-7.
Source: PubMed

ABSTRACT A fundamental observation in biology is that mitochondrial function, as measured by increased reactive oxygen species (ROS), changes significantly with age, suggesting a potential mechanistic link between the cellular processes governing longevity and mitochondrial metabolism homeostasis. In addition, it is well established that altered ROS levels are observed in multiple age-related illnesses including carcinogenesis, neurodegenerative, fatty liver, insulin resistance, and cardiac disease, to name just a few. Manganese superoxide dismutase (MnSOD) is the primary mitochondrial ROS scavenging enzyme that converts superoxide to hydrogen peroxide, which is subsequently converted to water by catalase and other peroxidases. It has recently been shown that MnSOD enzymatic activity is regulated by the reversible acetylation of specific, evolutionarily conserved lysine(s) in the protein. These results, suggest for the first time, that the mitochondria contain bidirectional post-translational signaling networks, similar to that observed in the cytoplasm and nucleus, and that changes in lysine acetylation alter MnSOD enzymatic activity. In addition, these new results demonstrate that the mitochondrial anti-aging or fidelity / sensing protein, SIRT3, responds to changes in mitochondrial nutrient and/or redox status to alter the enzymatic activity of specific downstream targets, including MnSOD that adjusts and/or maintains ROS levels as well as metabolic homeostatic poise.

Download full-text


Available from: Ozkan Ozden, Dec 19, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS) and reactive nitrogen species (RNS) participate in pathological tissue damage. Mitochondrial manganese superoxide dismutase (MnSOD) normally keeps ROS and RNS in check. During development of mangafodipir (MnDPDP) as a magnetic resonance imaging (MRI) contrast agent, it was discovered that MnDPDP and its metabolite manganese pyridoxyl ethyldiamine (MnPLED) possessed SOD mimetic activity. MnDPDP has been tested as a chemotherapy adjunct in cancer patients and as an adjunct to percutaneous coronary intervention in patients with myocardial infarctions, with promising results. Whereas MRI contrast depends on release of Mn2+, the SOD mimetic activity depends on Mn2+ that remains bound to DPDP or PLED. Calmangafodipir [Ca4Mn(DPDP)5] is stabilized with respect to Mn2+ and has superior therapeutic activity. Ca4Mn(DPDP)5 is presently being explored as a chemotherapy adjunct in a clinical multicenter Phase II study in patients with metastatic colorectal cancer.
    Drug Discovery Today 11/2014; 20(4). DOI:10.1016/j.drudis.2014.11.008 · 5.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyruvate dehydrogenase E1 alpha (PDHE1α or PDHA1) is the first component enzyme of the pyruvate dehydrogenase (PDH) complex (PDC) that transforms pyruvate, via pyruvate decarboxylation, into acetyl-CoA that is subsequently used by both the citric acid cycle and oxidative phosphorylation to generate ATP. As such, PDH links glycolysis and oxidative phosphorylation in normal as well as cancer cells. Herein we report that SIRT3 interacts with PDHA1 and directs its enzymatic activity via changes in protein acetylation. SIRT3 deacetylates PDHA1 lysine 321 (K321) and a PDHA1 mutant, mimicking a deacetylated lysine (PDHA1(K321R)) increases in PDH activity, as compared to the K321 acetylation mimic (PDHA1(K321Q)) or wild-type PDHA1. Finally, PDHA1(K321Q) exhibited a more transformed in vitro cellular phenotype as compared to PDHA1(K321R). These results suggest that the acetylation of PDHA1 provides another layer of enzymatic regulation, in addition to phosphorylation, involving a reversible acetyl-lysine suggesting that the acetylome, as well as the kinome, links glycolysis to respiration.
    Free Radical Biology and Medicine 08/2014; 76. DOI:10.1016/j.freeradbiomed.2014.08.001 · 5.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mitochondrial antioxidant enzyme, Mn superoxide dismutase (MnSOD), has been shown to confer cytoprotection and to regulate cell cycle progression. Resveratrol, a phytoestrogen found in red wines and other foods, has been previously reported to increase MnSOD protein levels and activity both in vitro and in vivo. Numerous structural analogues of resveratrol produced via the same stilbene synthesis pathway (e.g. pterostilbene and piceid) and also present in foods and red wine may be capable of eliciting the same effects. Furthermore, in humans resveratrol is rapidly metabolized to resveratrol-4'-sulfate, resveratrol-3-glucuronide and other metabolites in vivo. Although these metabolites may accumulate to relatively high levels in plasma and tissues, little is known about their biological activities. Here the activities were compared of these stilbenes and stilbene metabolites in mammalian cells. Two key cellular activities associated with resveratrol were examined: inhibition of proliferative growth and increased stress resistance (important anti-cancer and cell protective activities, respectively). While resveratrol-4'-sulfate and resveratrol-3-glucuronide had no effect on either cell growth or stress resistance, both pterostilbene and piceid were at least as effective as resveratrol. Using pharmacological and genetic approaches, it was found that the effects of pterostilbene and piceid required an induction of the mitochondrial enzyme MnSOD and intact mitochondrial respiration. In addition, using estrogen receptor beta (ERbeta) knockout mouse myoblasts, it was demonstrated that the effects of stilbene compounds on cell growth and stress resistance all require ERbeta. Taken together, these results indicate that resveratrol, pterostilbene and piceid all activate the same mitochondrial response in mammalian cells, and therefore these latter two molecules might be as effective as resveratrol in eliciting positive health outcomes in vivo.
    Phytochemistry 12/2013; 98. DOI:10.1016/j.phytochem.2013.11.019 · 3.35 Impact Factor