The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation

Department of Genetics, Stanford University School of Medicine
Aging (Impact Factor: 4.89). 02/2011; 3(2):108-24.
Source: PubMed

ABSTRACT In adult mammals, neural stem cells (NSCs) generate new neurons that are important for specific types of learning and memory. Controlling adult NSC number and function is fundamental for preserving the stem cell pool and ensuring proper levels of neurogenesis throughout life. Here we study the importance of the microRNA gene cluster miR-106b~25 (miR-106b, miR-93, and miR-25) in primary cultures of neural stem/progenitor cells (NSPCs) isolated from adult mice. We find that knocking down miR-25 decreases NSPC proliferation, whereas ectopically expressing miR-25 promotes NSPC proliferation. Expressing the entire miR-106b~25 cluster in NSPCs also increases their ability to generate new neurons. Interestingly, miR-25 has a number of potential target mRNAs involved in insulin/insulin-like growth factor-1 (IGF) signaling, a pathway implicated in aging. Furthermore, the regulatory region of miR-106b~25 is bound by FoxO3, a member of the FoxO family of transcription factors that maintains adult stem cells and extends lifespan downstream of insulin/IGF signaling. These results suggest that miR-106b~25 regulates NSPC function and is part of a network involving the insulin/IGF-FoxO pathway, which may have important implications for the homeostasis of the NSC pool during aging.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The avalanche of integromics and panomics approaches shifted the deciphering of aging mechanisms from single molecular entities to communities of them. In this orientation, we explore the cardiac aging mechanisms - risk factor for multiple cardiovascular diseases - by capturing the micronome synergism and detecting longevity signatures in the form of communities (modules). For this, we developed a meta-analysis scheme that integrates transcriptome expression data from multiple cardiac-specific independent studies in mouse and human along with proteome and micronome interaction data in the form of multiple independent weighted networks. Modularization of each weighted network produced modules, which in turn were further analyzed so as to define consensus modules across datasets that change substantially during lifespan. Also, we established a metric that determines - from the modular perspective - the synergism of microRNA-microRNA interactions as defined by significantly functionally associated targets. The meta-analysis provided 40 consensus integromics modules across mouse datasets and revealed microRNA relations with substantial collective action during aging. Three modules were reproducible, based on homology, when mapped against human-derived modules. The respective homologs mainly represent NADH dehydrogenases, ATP synthases, cytochrome oxidases, Ras GTPases and ribosomal proteins. Among various observations, we corroborate to the involvement of miR-34a (included in consensus modules) as proposed recently; yet we report that has no synergistic effect. Moving forward, we determined its age-related neighborhood in which HCN3, a known heart pacemaker channel, was included. Also, miR-125a-5p/-351, miR-200c/-429, miR-106b/-17, miR-363/-92b, miR-181b/-181d, miR-19a/-19b, let-7d/-7f, miR-18a/-18b, miR-128/-27b and miR-106a/-291a-3p pairs exhibited significant synergy and their association to aging and/or cardiovascular diseases is supported in many cases by a disease database and previous studies. On the contrary, we suggest that miR-22 has not substantial impact on heart longevity as proposed recently. We revised several proteins and microRNAs recently implicated in cardiac aging and proposed for the first time modules as signatures. The integromics meta-analysis approach can serve as an efficient subvening signature tool for more-oriented better-designed experiments. It can also accelerate combinational multi-target microRNA therapy of age-related cardiovascular diseases across the continuum from prevention to detection, diagnosis, treatment and outcome.
    BMC Genomics 12/2015; 16(1):1256. DOI:10.1186/s12864-015-1256-3 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells have an innate ability to occupy their stem cell niche, which in turn, is optimized to house stem cells. Organ aging is associated with reduced stem cell occupancy in the niche, but the mechanisms involved are poorly understood. Here, we report that Notch signaling is increased with age in Drosophila female germline stem cells (GSCs), and this results in their removal from the niche. Clonal analysis revealed that GSCs with low levels of Notch signaling exhibit increased adhesiveness to the niche, thereby out-competing their neighbors with higher levels of Notch; adhesiveness is altered through regulation of E-cadherin expression. Experimental enhancement of Notch signaling in GSCs hastens their age-dependent loss from the niche, and such loss is at least partially mediated by Sex lethal. However, disruption of Notch signaling in GSCs does not delay GSC loss during aging, and nor does it affect BMP signaling, which promotes self-renewal of GSCs. Finally, we show that in contrast to GSCs, Notch activation in the niche (which maintains niche integrity, and thus mediates GSC retention) is reduced with age, indicating that Notch signaling regulates GSC niche occupancy both intrinsically and extrinsically. Our findings expose a novel role of Notch signaling in controlling GSC-niche adhesion in response to aging, and are also of relevance to metastatic cancer cells, in which Notch signaling suppresses cell adhesion.
    PLoS Genetics 12/2014; 10(12):e1004888. DOI:10.1371/journal.pgen.1004888 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Repetitive transcranial magnetic stimulation (rTMS) has increasingly been studied over the past decade to determine whether it has a therapeutic benefit on focal cerebral ischemia. However, the underlying mechanism of rTMS in this process remains unclear. In the current study, we investigated the effects of rTMS on the proliferation of adult neural stem cells (NSCs) and explored microRNAs (miRNAs) that were affected by rTMS. Our data showed that 10 Hz rTMS significantly increased the proliferation of adult NSCs after focal cerebral ischemia in the subventricular zone (SVZ), and the expression of miR-25 was obviously up-regulated in the ischemic cortex after rTMS. p57, an identified miR-25 target gene that regulates factors linked to NSC proliferation, was also evaluated, and it exhibited down-regulation. To further verify the role of miR-25, rats were injected with a single dose of antagomir-25 and were subjected to focal cerebral ischemia followed by rTMS treatment. The results confirmed that miR-25 could be repressed specifically and could drive the up-regulation of its target gene (p57), which resulted in the inhibition of adult NSC proliferation in the SVZ after rTMS. Thus, our studies strongly indicated that 10 Hz rTMS can promote the proliferation of adult NSCs in the SVZ after focal cerebral ischemia by regulating the miR-25/p57 pathway.
    PLoS ONE 10/2014; 9(10):e109267. DOI:10.1371/journal.pone.0109267 · 3.53 Impact Factor

Preview (3 Sources)

Available from