Article

Spatially Detailed Survey on Pollution by Multiple Perfluorinated Compounds in the Tokyo Bay Basin of Japan

Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan.
Environmental Science & Technology (Impact Factor: 5.48). 03/2011; 45(7):2887-93. DOI: 10.1021/es103917r
Source: PubMed

ABSTRACT Pollution from 35 perfluorinated compounds (PFCs) in the water of the Tokyo Bay basin was examined. The water in the basin contained relatively high levels of perfluorononanoate (PFNA), perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) compared to the other PFCs, which were present at concentrations of 20.1 ng/L, 6.7 ng/L, and 5.8 ng/L, respectively. In contrast, the concentrations of their precursors and degradation products were an order of magnitude lower. Sewage treatment plant (STP) effluent in the area also contained high levels of PFNA compared with the river water samples (Mann-Whitney U-test, p<0.0002). From a spatial aspect, increases in PFC pollution levels correlated with increased urbanization in the study area suggested that there are nonpoint source contributors to the PFC pollution in this area. Branched isomers of the PFCs were also quantified. Samples that contained high concentrations of perfluoroalkyl carboxylates (PFCA) showed lower proportions of its branched isomer. This indicates that the branched isomers are more prominent in the area with lower PFC pollution. This analysis was beneficial for estimating the individual contributions of different PFCA production processes. This survey provided new information on the sources, spatial distribution, and behavioral characteristics of PFC pollutants in this area.

0 Followers
 · 
121 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spatial distributions of perfluoroalkyl substances (PFASs) were investigated in surface waters in Shanghai, Jiangsu and Zhejiang Provinces of eastern China during 2011. A total of 39 samples of surface waters, including 29 rivers, 6 lakes and 4 reservoirs were collected. High performance liquid chromatography/negative electrospray ionization-tandem mass spectrometry (HPLC/(-)ESI-MS/MS) was used to identify and quantify PFASs. Concentrations of PFAS were greater in Shanghai than that in Zhejiang Province. Concentrations of the sum of PFASs (∑PFASs) in Shanghai and Kunshan ranged from 39 to 212ngL(-1), while in Zhejiang Province, concentrations of ∑PFASs ranged from 0.68 to 146ngL(-1). Perfluorooctanoic acid (PFOA) was the prevalent PFAS in Shanghai. In contrast, PFOA and perfluorohexanoic acid (PFHxA) were the prevalent PFASs in Zhejiang Province. Concentrations of perfluorooctane sulfonate (PFOS) ranged from <0.07 to 9.7ngL(-1). Annual mass of ∑PFASs transported by rivers that flow into the East China Sea were calculated to be more than 4000kg PFASs. Correlation analyses between concentrations of individual PFASs showed the correlation between PFHxA and PFOA was positive, while the correlation between PFHxA and perfluorooctane sulfonamide (FOSA) was negative in Shanghai, which indicated that PFHxA and PFOA have common sources. Principal component analysis (PCA) was employed to identify important components or factors that explain different compounds, and results showed that PFHxA and FOSA dominated factor loadings.
    Chemosphere 09/2014; 119C:820-827. DOI:10.1016/j.chemosphere.2014.08.045 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The occurrence and levels of perfluoroalkyl acids (PFAAs) emitted from specific pollution sources into the aquatic environment in Switzerland were studied using digested sewage sludges from 45 wastewater treatment plants in catchments containing a wide range of potential industrial emitters. Concentrations of individual PFAAs show a high spatial and temporal variability, which infers different contributions from industrial technologies and activities. Perfluorooctane sulfonic acid (PFOS) was generally the predominant PFAA with concentrations varying between 4 and 2440μgkg(-1) (median 75μgkg(-1)). Elevated emissions were especially observed in catchments capturing discharges from metal plating industries (median 82μgkg(-1)), aqueous firefighting foams (median 215μgkg(-1)) and landfill leachates (median 107μgkg(-1)). Some elevated perfluoroalkyl carboxylic acids (PFCAs) levels could be attributed to emissions from textile finishing industries with concentrations up to 233μgkg(-1) in sewage sludge. Assuming sorption to sludge for PFOS and PFCAs of 15% and 2%, respectively, concentrations in wastewater effluents up to the low μgL(-1) level were estimated. Even if wastewater may be expected to be diluted between 10 and 100 times by the receiving waters, elevated concentrations may be reached at specific locations. Although sewage sludge is a minor compartment for PFAAs in WWTPs, these investigations are helpful for the identification of hot-spots from industrial emitters as well as to estimate monthly average concentrations in wastewater.
    Chemosphere 08/2014; DOI:10.1016/j.chemosphere.2014.07.045 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This is the first nationwide study of perfluoroalkyl acids (PFAAs) in environmental waters in Vietnam. Twenty-eight river water and 22 groundwater samples collected in four major cities and 14 river water samples from the Red River were screened to investigate the occurrence and sources of 16 PFAAs. Perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) were the most prevalent of 11 detected PFAAs with maximum concentrations in urban river water of 5.3, 18 and 0.93ngL(-1), respectively, and in groundwater of 8.2, 4.5 and 0.45ngL(-1), respectively. PFAAs in the Red River water were detected at low levels. PFAA concentrations in river water were higher in the rainy season than in the dry season, possibly due to storm water runoff, a common phenomenon in Southeast Asian countries. The highest concentrations of PFAAs in river water were observed in samples from highly populated and industrialized areas, perhaps sourced from sewage. The PFAA concentrations observed were similar to those in other Southeast Asian countries, but lower than in developed nations. From the composition profiles of PFAAs, industrial products containing PFAAs imported from China and Japan might be one of the major sources of PFAAs in the Vietnamese aquatic environment. According to the health-based values and advisory issued by the United States Environmental Protection Agency (USEPA), the concentrations of detected PFAAs in this study do not pose an immediate health risk to humans and aquatic organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Chemosphere 12/2014; DOI:10.1016/j.chemosphere.2014.11.023 · 3.50 Impact Factor

Full-text

Download
56 Downloads
Available from
May 29, 2014