Polypeptide binding specificities of Saccharomyces cerevisiae oligosaccharyltransferase accessory proteins Ost3p and Ost6p.

School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
Protein Science (Impact Factor: 2.86). 03/2011; 20(5):849-55. DOI: 10.1002/pro.610
Source: PubMed

ABSTRACT Asparagine-linked glycosylation is a common and vital co- and post-translocational modification of diverse secretory and membrane proteins in eukaryotes that is catalyzed by the multiprotein complex oligosaccharyltransferase (OTase). Two isoforms of OTase are present in Saccharomyces cerevisiae, defined by the presence of either of the homologous proteins Ost3p or Ost6p, which possess different protein substrate specificities at the level of individual glycosylation sites. Here we present in vitro characterization of the polypeptide binding activity of these two subunits of the yeast enzyme, and show that the peptide-binding grooves in these proteins can transiently bind stretches of polypeptide with amino acid characteristics complementary to the characteristics of the grooves. We show that Ost6p, which has a peptide-binding groove with a strongly hydrophobic base lined by neutral and basic residues, binds peptides enriched in hydrophobic and acidic amino acids. Further, by introducing basic residues in place of the wild type neutral residues lining the peptide-binding groove of Ost3p, we engineer binding of a hydrophobic and acidic peptide. Our data supports a model of Ost3/6p function in which they transiently bind stretches of nascent polypeptide substrate to inhibit protein folding, thereby increasing glycosylation efficiency at nearby asparagine residues.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Asparagine-linked N-glycosylation is a common modification of proteins that promotes productive protein folding and increases protein stability. Although N-glycosylation is important for glycoprotein folding, the precise sites of glycosylation are often not conserved between protein homologues. Here we show that, in Saccharomyces cerevisiae, proteins upregulated during sporulation under nutrient deprivation have few N-glycosylation sequons and in their place tend to contain clusters of like-charged amino-acid residues. Incorporation of such sequences complements loss of in vivo protein function in the absence of glycosylation. Targeted point mutation to create such sequence stretches at glycosylation sequons in model glycoproteins increases in vitro protein stability and activity. A dependence on glycosylation for protein stability or activity can therefore be rescued with a small number of local point mutations, providing evolutionary flexibility in the precise location of N-glycans, allowing protein expression under nutrient-limiting conditions, and improving recombinant protein production.
    Nature Communications 01/2014; 5:3099. · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: N-linked glycosylation of proteins in the endoplasmic reticulum (ER) is essential in eukaryotes and catalyzed by oligosaccharyl transferase (OST). Human OST is a hetero-oligomer of seven subunits. The subunit N33/Tusc3 is a tumor suppressor candidate, and defects in the subunit N33/Tusc3 are linked with nonsyndromic mental retardation. Here, we show that N33/Tusc3 possesses a membrane-anchored N-terminal thioredoxin domain located in the ER lumen that may form transient mixed disulfide complexes with OST substrates. X-ray structures of complexes between N33/Tusc3 and two different peptides as model substrates reveal a defined peptide-binding groove adjacent to the active site that can accommodate peptides in opposite orientations. Structural and biochemical data show that N33/Tusc3 prefers peptides bearing a hydrophobic residue two residues away from the cysteine forming the mixed disulfide with N33/Tusc3. Our results support a model in which N33/Tusc3 increases glycosylation efficiency for a subset of human glycoproteins by slowing glycoprotein folding.
    Structure 03/2014; · 6.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oligosaccharyltransferase (OTase) glycosylates selected asparagine residues in secreted and membrane proteins in eukaryotes, and asparagine (N)-glycosylation affects the folding, stability and function of diverse glycoproteins. The range of acceptor protein substrates that are efficiently glycosylated depends on the action of several accessory subunits of OTase, including in yeast the homologous proteins Ost3p and Ost6p. A model of Ost3p and Ost6p function has been proposed in which their thioredoxin-like active site cysteines form transient mixed disulfide bonds with cysteines in substrate proteins to enhance the glycosylation of nearby asparagine residues. We tested aspects of this model with a series of in vitro assays. We developed a whole protein mixed disulfide interaction assay that showed that Ost6p could form mixed disulfide bonds with selected cysteines in pre-reduced yeast Gas1p, a model glycoprotein substrate of Ost3p and Ost6p. A complementary peptide affinity chromatography assay for mixed disulfide bond formation showed that Ost3p could also form mixed disulfide bonds with cysteines in selected reduced tryptic peptides from Gas1p. Together, these assays showed that the thioredoxin-like active sites of Ost3p and Ost6p could form transient mixed disulfide bonds with cysteines in a model substrate glycoprotein, consistent with the function of Ost3p and Ost6p in modulating N-glycosylation substrate selection by OTase in vivo.
    Biochemical and Biophysical Research Communications 02/2013; · 2.28 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014