Polypeptide binding specificities of Saccharomyces cerevisiae oligosaccharyltransferase accessory proteins Ost3p and Ost6p

School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
Protein Science (Impact Factor: 2.85). 05/2011; 20(5):849-55. DOI: 10.1002/pro.610
Source: PubMed


Asparagine-linked glycosylation is a common and vital co- and post-translocational modification of diverse secretory and membrane proteins in eukaryotes that is catalyzed by the multiprotein complex oligosaccharyltransferase (OTase). Two isoforms of OTase are present in Saccharomyces cerevisiae, defined by the presence of either of the homologous proteins Ost3p or Ost6p, which possess different protein substrate specificities at the level of individual glycosylation sites. Here we present in vitro characterization of the polypeptide binding activity of these two subunits of the yeast enzyme, and show that the peptide-binding grooves in these proteins can transiently bind stretches of polypeptide with amino acid characteristics complementary to the characteristics of the grooves. We show that Ost6p, which has a peptide-binding groove with a strongly hydrophobic base lined by neutral and basic residues, binds peptides enriched in hydrophobic and acidic amino acids. Further, by introducing basic residues in place of the wild type neutral residues lining the peptide-binding groove of Ost3p, we engineer binding of a hydrophobic and acidic peptide. Our data supports a model of Ost3/6p function in which they transiently bind stretches of nascent polypeptide substrate to inhibit protein folding, thereby increasing glycosylation efficiency at nearby asparagine residues.

Download full-text


Available from: Muhammad Fairuz B Jamaluddin,
  • Source
    • "The dimensions of the groove are appropriate for binding a ~4-5 amino acid stretch of extended polypeptide, or an amphipathic alpha helix. Ost3p also binds hydrophobic stretches of polypeptide, but with a distinct amino acid characteristic specificity to Ost6p (Jamaluddin et al., 2011). It has also been proposed that the oxidoreductase activity of the thioredoxin-like ER lumenal domain of Ost3p and Ost6p could form mixed disulfides with cysteines in nascent polypeptides (Schulz et al., 2009). "

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rot1 is an essential yeast protein originally shown to be implicated in such diverse processes such as β-1,6-glucan synthesis, actin cytoskeleton dynamics or lysis of autophagic bodies. More recently also a role as a molecular chaperone has been discovered. Here, we report that Rot1 interacts in a synthetic manner with Ost3, one of the nine subunits of the oligosaccharyltransferase (OST) complex, the key enzyme of N-glycosylation. The deletion of OST3 in the rot1-1 mutant causes a temperature sensitive phenotype as well as sensitivity toward compounds interfering with cell wall biogenesis such as Calcofluor White, caffeine, Congo Red and hygromycin B, whereas the deletion of OST6, a functional homolog of OST3, has no effect. OST activity in vitro determined in membranes from rot1-1ost3Δ cells was found to be decreased to 45% compared with wild-type membranes, and model glycoproteins of N-glycosylation, like carboxypeptidase Y, Gas1 or dipeptidyl aminopeptidase B, displayed an underglycosylation pattern. By affinity chromatography, a physical interaction between Rot1 and Ost3 was demonstrated. Moreover, Rot1 was found to be involved also in the O-mannosylation process, as the glycosylation of distinct glycoproteins of this type were affected as well. Altogether, the data extend the role of Rot1 as a chaperone required to ensure proper glycosylation.
    Glycobiology 04/2012; 22(7):939-47. DOI:10.1093/glycob/cws068 · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Asparagine-linked glycosylation is a common post-translational modification of proteins in eukaryotes. Mutations in the human ALG3 gene cause changed levels and altered glycan structures on mature glycoproteins and are the cause of a severe congenital disorder of glycosylation (CDG-Id). Diverse glycoproteins are also under-glycosylated in Saccharomyces cerevisae alg3 mutants. Here we analyzed site-specific glycosylation occupancy in this yeast model system using peptide-N-glycosidase F to label glycosylation sites with an asparagine-aspartate conversion that creates a new endoproteinase AspN cleavage site, followed by proteolytic digestion, and detection of peptides and glycopeptides by LC-ESI-MS/MS. We used this analytical method to identify and measure site-specific glycosylation occupancy in alg3 mutant and wild type yeast strains. We found decreased site-specific N-glycosylation occupancy in the alg3 knockout strain preferentially at Asn-Xaa-Ser sequences located in secondary structural elements, features previously associated with poor glycosylation efficiency. Furthermore, we identified 26 previously experimentally unverified glycosylation sites. Our results provide insights into the underlying mechanisms of disease in CDG-Id, and our methodology will be useful in site-specific glycosylation analysis in many model systems and clinical applications.
    Journal of Proteome Research 10/2012; 11(11). DOI:10.1021/pr300599f · 4.25 Impact Factor
Show more