Trivalent Adenovirus Type 5 HIV Recombinant Vaccine Primes for Modest Cytotoxic Capacity That Is Greatest in Humans with Protective HLA Class I Alleles

Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.
PLoS Pathogens (Impact Factor: 7.56). 02/2011; 7(2):e1002002. DOI: 10.1371/journal.ppat.1002002
Source: PubMed


If future HIV vaccine design strategies are to succeed, improved understanding of the mechanisms underlying protection from infection or immune control over HIV replication remains essential. Increased cytotoxic capacity of HIV-specific CD8+ T-cells associated with efficient elimination of HIV-infected CD4+ T-cell targets has been shown to distinguish long-term nonprogressors (LTNP), patients with durable control over HIV replication, from those experiencing progressive disease. Here, measurements of granzyme B target cell activity and HIV-1-infected CD4+ T-cell elimination were applied for the first time to identify antiviral activities in recipients of a replication incompetent adenovirus serotype 5 (Ad5) HIV-1 recombinant vaccine and were compared with HIV-negative individuals and chronically infected patients, including a group of LTNP. We observed readily detectable HIV-specific CD8+ T-cell recall cytotoxic responses in vaccinees at a median of 331 days following the last immunization. The magnitude of these responses was not related to the number of vaccinations, nor did it correlate with the percentages of cytokine-secreting T-cells determined by ICS assays. Although the recall cytotoxic capacity of the CD8+ T-cells of the vaccinee group was significantly less than that of LTNP and overlapped with that of progressors, we observed significantly higher cytotoxic responses in vaccine recipients carrying the HLA class I alleles B*27, B*57 or B*58, which have been associated with immune control over HIV replication in chronic infection. These findings suggest protective HLA class I alleles might lead to better outcomes in both chronic infection and following immunization due to more efficient priming of HIV-specific CD8+ T-cell cytotoxic responses.

Download full-text


Available from: Nicole Frahm,
28 Reads
  • Source
    • "The potential mechanisms responsible of such differences have been discussed elsewhere [8] but it seems that probably, the maturation status of our defective particle could imply a major stability which allows increased peptide presentation and processing by APC. This result is really interesting because the magnitude of a vaccine-induced responses may be related to the potency and frequency of immunization, which may also influence durability of the response [34]. As Pantaleo et al. [35] describe the broader the antigen pool the wider the T cell repertoire that can be mobilized. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Generation of new reagents that can be used to screen or monitor HIV-1-specific responses constituted an interesting field in the development of HIV vaccines to improve their efficacy. We have evaluated the specific T cell response against different types of NL4-3 virions (including NL4-3 aldrithiol-2 treated, NL4-3/ΔRT and R5 envelopes: NL4-3/ΔRT/ΔEnv[AC10] and NL4-3/ΔRT/ΔEnv[Bal]) and against pools of overlapping peptides (15 mer) encompassing the HIV-1 Gag and Nef regions. Cryopreserved PBMC from a subset of 69 chronic asymptomatic HIV positive individuals have been employed using different techniques including IFN-γ ELISPOT assay, surface activation markers and intracellular cytokine staining (ICS) by flow cytometry. The differential response obtained against NL4-3 aldrithiol-2 treated and NL4-3/ΔRT virions (25% vs 55%, respectively) allow us to divide the population in three groups: "full-responders" (positive response against both viral particles), "partial-responders" (positive response only against NL4-3/ΔRT virions) and "non-responders" (negative responses). There was no difference between X4 and R5 envelopes. The magnitude of the total responses was higher against NL4-3/ΔRT and was positively correlated with gender and inverse correlated with viral load. On the contrary CD4+ T cell count was not associated with this response. In any case responses to the viruses tended to be lower in magnitude than those detected by the overlapping peptides tested. Finally we have found an increased frequency of HLA-B27 allele (23% vs 9%) and a significant reduction in some activation markers (CD69 and CD38) on T cells surface in responders vs non-responders individuals. In summary these virions could be considered as alternative and useful reagents for screening HIV-1-specific T cell responses in HIV exposed uninfected people, HIV infected patients and to assess immunogenicity of new prototypes both in vitro and in vaccine trials, by a feasible, simply, effective and low cost assay.
    PLoS ONE 03/2013; 8(3):e58927. DOI:10.1371/journal.pone.0058927 · 3.23 Impact Factor
  • Source
    • "A follow up study from the same group showed that peptide presentation properties of particular B*35 subtypes explain much of this association [38]. The dominance of HLA-B in the control of HIV-1 infection is supported by several studies which associated HLA-B*57, B*5801 and B*27 with slower disease progression rates (time to AIDS) and strong virologic (viral load) and immunologic control (CD4 count) [39-48], while B*35, B*5802 and B*18 were associated with ineffective control of viral replication and rapid progression to AIDS [37,43,44,47,49,50]. In addition, a significantly greater number of CD8+ T cell responses are HLA-B restricted, compared to HLA-A and -C. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The major histocompatibility complex class I protein HLA-C plays a crucial role as a molecule capable of sending inhibitory signals to both natural killer (NK) cells and cytotoxic T lymphocytes (CTL) via binding to killer cell Ig-like receptors (KIR). Recently HLA-C has been recognized as a key molecule in the immune control of HIV-1. Expression of HLA-C is modulated by a microRNA binding site. HLA-C alleles that bear substitutions in the microRNA binding site are more expressed at the cell surface and associated with the control of HIV-1 viral load, suggesting a role of HLA-C in the presentation of antigenic peptides to CTLs. This review highlights the role of HLA-C in association with HIV-1 viral load, but also addresses the contradiction of the association between high cell surface expression of an inhibitory molecule and strong cell-mediated immunity. To explore additional mechanisms of control of HIV-1 replication by HLA-C, we address specific features of the molecule, like its tendency to be expressed as open conformer upon cell activation, which endows it with a unique capacity to associate with other cell surface molecules as well as with HIV-1 proteins.
    Retrovirology 05/2012; 9(1):39. DOI:10.1186/1742-4690-9-39 · 4.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The quest for an effective and safe HIV-1 vaccine has been and still is the aspiration of many scientists and clinicians worldwide. Until recently, the hopes for an effective vaccine were thwarted by the disappointing results and early termination in September 2007 of the STEP study, which saw a subgroup of male vaccine recipients at an increased risk of HIV-1 infection, and the failure of earlier trials of vaccines based on recombinant envelope proteins to provide any level of protection. The results of the STEP study raised important questions in the field of HIV vaccines, including the use of recombinant adenovirus vectors as immunogens, the rationale for the development of T-cell-based vaccines and the development pathway for these vaccines, in terms of assessment of immunogenicity and the challenge models used. The study of neutralizing antibodies has demonstrated that the induction of high-titre, broadly neutralizing antibodies in the majority of recipients is likely to be highly problematic. However, the results of the RV144 Thai trial released in September 2009 have brought new optimism to the field. This study employed envelope-based immunogens delivered as a priming vaccination with a recombinant poxvirus vector and boosting with recombinant proteins. This regimen provided modest protection to HIV-1 infection in a low-risk population. Although the correlates of protection are currently unknown, extensive studies are underway to try to determine these. Neutralizing antibodies were not induced in the RV144 study; however, considerable titres of binding antibodies to HIV-1 viral envelope (Env) were. It is speculated that these antibodies may have provided a means of protection by a mechanism such as antibody-dependent cell-mediated cytotoxicity. In addition, no CD8+ T-cell responses were induced, but robust CD4+ T-cell responses were, and correlates of protection are being sought by analysing the quality of this aspect of the vaccine-induced immune response. The current paradigm for an optimal HIV-1 vaccine is to design immunogens and vaccination protocols that allow the induction of both broadly neutralizing humoral and broadly reactive and effective cell-mediated immunity, to act at sites of possible infection and post-infection, respectively. However, this is challenged by the results of the RV144 trial as neither of these responses were induced but modest protection was observed. Understanding the biology and immunopathology of HIV-1 early following infection, its modes of transmission and the human immune system's response to the virus should aid in the rational design of vaccines of increased efficacy.
    Drugs 03/2011; 71(4):387-414. DOI:10.2165/11585400-000000000-00000 · 4.34 Impact Factor
Show more