Cystic precursors to invasive pancreatic cancer

The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21231, USA.
Nature Reviews Gastroenterology &#38 Hepatology (Impact Factor: 12.61). 03/2011; 8(3):141-50. DOI: 10.1038/nrgastro.2011.2
Source: PubMed


Improvements in the sensitivity and quality of cross-sectional imaging have led to increasing numbers of patients being diagnosed with cystic lesions of the pancreas. In parallel, clinical, radiological, pathological and molecular studies have improved the systems for classifying these cysts. Patients with asymptomatic serous cystic neoplasms can be managed conservatively with regular monitoring; however, the clinical management of patients with intraductal papillary mucinous neoplasms and mucinous cystic neoplasms is far more challenging, as it is difficult to determine whether these lesions will progress to malignancy. Fortunately, prospective studies have helped to establish that proposed clinical and radiological criteria (the Sendai guidelines) can be used to guide the care of patients with cystic lesions of the pancreas. Despite this progress in imaging and clinical guidelines, sensitive and specific tests have not yet been developed that can reliably predict the histology and biological properties of a cystic lesion. Such biomarkers are urgently needed, as noninvasive precursors of pancreatic cancer are curable, while the vast majority of invasive pancreatic adenocarcinomas are not.

Download full-text


Available from: Hanno Matthaei, Apr 03, 2014
  • Source
    • "Immunohistochemically ITPN demonstrates positivity for CK7, CK19, MUC1, MUC6 and SMAD4 while trypsin, MUC2, MUC5AC, fascin, p53 and β-catenin are negative. Molecular analyses reveal mutations for PIK3CA in one third of ITPNs but in contrast, mutations in KRAS and BRAF are not detectable [1,3]. So far all reports of ITPN describe the cytoplasm of the ITPN cells as eosinophilic to amphophilic. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Intraductal tubulopapillary neoplasms of the pancreas are very rare tumors characterized by intraductal tubulopapillary growth, ductal differentiation, scant intracellular mucin production and cellular dysplasia. Here, we report the first case of an intraductal tubulopapillary neoplasm of the pancreas with clear cell morphology. The tumor was detected during the diagnostic work-up of acute pancreatitis in a 43- year old female. Histological examination revealed a tumor with the typical architecture of an intraductal tubulopapillary neoplasm of the pancreas with tumor cells showing abundant clear cytoplasm and Di-PAS negativity. Immunohistochemistry revealed positivity for Pan-CK, CK7, CK8/18, MUC1, MUC6, carbonic anhydrase IX, CD10, EMA, β-catenin and e-cadherin. Sanger sequencing did not detect mutations for β-catenin, BRAF, KRAS, PIK3CA and GNAS. Altogether, histology, immunohistochemical expression profile (MUC1+, MUC6+, MUC2-, MUC5AC-, thrypsin-, chymotrypsin-, CDX2-) and sequencing results led to the diagnosis of intraductal tubulopapillary neoplasm. However, the neoplasm consisted of cells showing abundant clear cytoplasm, a morphological pattern not being described so far in the current classification of pancreatic intraductal neoplasms. Potential differential diagnosis and the molecular basis of clear cell morphology are discussed. In conclusion, we consider this tumor as intraductal tubulopapillary neoplasm of the pancreas with unique clear cell phenotype. After surgery and without adjuvant therapy, the patient’s clinical course has been uneventful for over two years now. Virtual slides The virtual slide(s) for this article can be found here:
    Diagnostic Pathology 01/2014; 9(1):11. DOI:10.1186/1746-1596-9-11 · 2.60 Impact Factor
  • Source
    • "Schematic comparison of the therapeutic time window between pancreatic ductal adenocarcinoma and the intraductal papillary mucinous neoplasia (Yamao et al., 2000; Salvia et al., 2004; Sohn et al., 2004; Yachida et al., 2010; Matthaei et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Our understanding of pancreatic ductal adenocarcinoma (PDAC) is shifting away from a disease of malignant ductal cells-only, toward a complex system where tumor evolution is a result of interaction of cancer cells with their microenvironment. This change has led to intensification of research focusing on the fibrotic stroma of PDAC. Pancreatic stellate cells (PSCs) are the main fibroblastic cells of the pancreas which are responsible for producing the desmoplasia in chronic pancreatitis (CP) and PDAC. Clinically, the effect of desmoplasia is two-sided; on the negative side it is a hurdle in the diagnosis of PDAC because the fibrosis in cancer resembles that of CP. It is also believed that PSCs and pancreatic fibrosis are partially responsible for the therapy resistance in pancreatic cancer. On the positive side, a fibrotic pancreas is safer to operate on compared to a fatty and soft pancreas which is prone for postoperative pancreatic fistula. In this review the impact of pancreatic fibrosis on diagnosis of pancreatic cancer and surgical decisions are discussed from a clinical point of view.
    Frontiers in Physiology 10/2012; 3:389. DOI:10.3389/fphys.2012.00389 · 3.53 Impact Factor
  • Source
    • "Whilst there are some striking findings from the microarray and validation, the following should be taken into account. Firstly, the various pancreatic BCT are very rare (prevalence reported in the literature as between 0.2–2.6% in the asymptomatic general population [9]) and the tissues are difficult to obtain as few patients undergo surgical resection. This is reflected in our small sample sizes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers.
    PLoS ONE 02/2012; 7(2):e32068. DOI:10.1371/journal.pone.0032068 · 3.23 Impact Factor
Show more