Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK.

Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/2011; 108(12):4788-93. DOI: 10.1073/pnas.1100844108
Source: PubMed

ABSTRACT Macroautophagy (herein referred to as autophagy) is an evolutionarily conserved self-digestive process cells adapt to starvation and other stress responses. Upon starvation, autophagy is induced, providing cells with needed nutrient supplies. We report here that Unc-51-like kinase 1 (Ulk1), a key initiator for mammalian autophagy, undergoes dramatic dephosphorylation upon starvation, particularly at serine 638 and serine 758. Phosphorylations of Ulk1 are mediated by mammalian target-of-rapamycin (mTOR) kinase and adenosine monophosphate activated protein kinase (AMPK). AMPK interacts with Ulk1 in a nutrient-dependent manner. Proper phosphorylations on Ulk1 are crucial for Ulk1/AMPK association, as a single serine-to-alanine mutation (S758A) at Ulk1 impairs this interaction. Compared to the wild-type ULK1, this Ulk1-S758A mutant initiates starvation-induced autophagy faster at an early time point, but does not alter the maximum capacity of autophagy when starvation prolongs. This study therefore revealed previously unnoticed acute autophagy response to environmental changes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.
    BioMed Research International 01/2014; 2014:603980. · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS) have an important role in regulating various cellular processes. Our previous study confirmed that selenite, an anti-tumour agent, triggered apoptosis through the production of ROS in multiple types of cancer cells. In this study, we discovered that ROS also inhibited protective autophagy by decreasing the expression of ULK1, an initiator of autophagy, in selenite-treated NB4 cells. Further experiments demonstrated that p-p53 (S392), a phosphorylation event promoted by p70S6K, bound to the promoter of ULK1 and modulated its expression. Experiments in a mouse tumour model with NB4 cells provided in vivo confirmation of the alterations in the p70S6K/p53/ULK1 axis. Collectively, our results show that ROS inhibited autophagy by downregulating the p70S6K/p53/ULK1 axis in selenite-treated NB4 cells.
    Cell Death & Disease 11/2014; 5:e1542. · 5.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence reveals that metabolic and cell survival pathways are closely related, sharing common signaling molecules. Hexokinase catalyzes the phosphorylation of glucose, the rate-limiting first step of glycolysis. Hexokinase II (HK-II) is a predominant isoform in insulin-sensitive tissues such as heart, skeletal muscle, and adipose tissues. It is also upregulated in many types of tumors associated with enhanced aerobic glycolysis in tumor cells, the Warburg effect. In addition to the fundamental role in glycolysis, HK-II is increasingly recognized as a component of a survival signaling nexus. This review summarizes recent advances in understanding the protective role of HK-II, controlling cellular growth, preventing mitochondrial death pathway and enhancing autophagy, with a particular focus on the interaction between HK-II and Akt/mTOR pathway to integrate metabolic status with the control of cell survival.Cell Death and Differentiation advance online publication, 17 October 2014; doi:10.1038/cdd.2014.173.
    Cell Death and Differentiation 10/2014; 22(2). · 8.39 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014