Missing Not at Random Models for Latent Growth Curve Analyses

Department of Psychology, Arizona State University,Tempe, AZ 85287–1104, USA.
Psychological Methods (Impact Factor: 4.45). 03/2011; 16(1):1-16. DOI: 10.1037/a0022640
Source: PubMed

ABSTRACT The past decade has seen a noticeable shift in missing data handling techniques that assume a missing at random (MAR) mechanism, where the propensity for missing data on an outcome is related to other analysis variables. Although MAR is often reasonable, there are situations where this assumption is unlikely to hold, leading to biased parameter estimates. One such example is a longitudinal study of substance use where participants with the highest frequency of use also have the highest likelihood of attrition, even after controlling for other correlates of missingness. There is a large body of literature on missing not at random (MNAR) analysis models for longitudinal data, particularly in the field of biostatistics. Because these methods allow for a relationship between the outcome variable and the propensity for missing data, they require a weaker assumption about the missing data mechanism. This article describes 2 classic MNAR modeling approaches for longitudinal data: the selection model and the pattern mixture model. To date, these models have been slow to migrate to the social sciences, in part because they required complicated custom computer programs. These models are now quite easy to estimate in popular structural equation modeling programs, particularly Mplus. The purpose of this article is to describe these MNAR modeling frameworks and to illustrate their application on a real data set. Despite their potential advantages, MNAR-based analyses are not without problems and also rely on untestable assumptions. This article offers practical advice for implementing and choosing among different longitudinal models.

1 Follower
  • Journal of Marketing 11/2014; 78(6):78-102. DOI:10.1509/jm.13.0509 · 5.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Psychologists often use latent transition analysis (LTA) to investigate state-to-state change in discrete latent constructs involving delinquent or risky behaviors. In this setting, latent-state-dependent nonignorable missingness is a potential concern. For some longitudinal models (e.g., growth models), a large literature has addressed extensions to accommodate nonignorable missingness. In contrast, little research has addressed how to extend the LTA to accommodate nonignorable missingness. Here we present a shared parameter LTA that can reduce bias due to latent-state-dependent nonignorable missingness: a parallel-process missing-not-at-random (MNAR-PP) LTA. The MNAR-PP LTA allows outcome process parameters to be interpreted as in the conventional LTA, which facilitates sensitivity analyses assessing changes in estimates between LTA and MNAR-PP LTA. In a sensitivity analysis for our empirical example, previous and current membership in high-delinquency states predicted adolescents' membership in missingness states that had high nonresponse probabilities for some or all items. A conventional LTA overestimated the proportion of adolescents ending up in a low-delinquency state, compared to an MNAR-PP LTA.
    Psychometrika 02/2015; DOI:10.1007/s11336-015-9442-4 · 1.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A decade ago, the Society of Prevention Research (SPR) endorsed a set of standards for evidence related to research on prevention interventions. These standards (Flay et al., Prevention Science 6:151-175, 2005) were intended in part to increase consistency in reviews of prevention research that often generated disparate lists of effective interventions due to the application of different standards for what was considered to be necessary to demonstrate effectiveness. In 2013, SPR's Board of Directors decided that the field has progressed sufficiently to warrant a review and, if necessary, publication of "the next generation" of standards of evidence. The Board convened a committee to review and update the standards. This article reports on the results of this committee's deliberations, summarizing changes made to the earlier standards and explaining the rationale for each change. The SPR Board of Directors endorses "The Standards of Evidence for Efficacy, Effectiveness, and Scale-up Research in Prevention Science: Next Generation."
    Prevention Science 04/2015; DOI:10.1007/s11121-015-0555-x · 2.63 Impact Factor


Available from