A theoretical method for estimating the characteristics of radon transportin homogeneous soil

Annals of Geophysics 01/2009; 48(1).
Source: DOAJ


A theoretical method for estimating the characteristics of radon transport in homogeneous soil is developed. The method allows the following characteristics to be estimated: depth distribution function of the soil gas radon concentration, equilibrium radon concentration in the soil air, depth at which the radon concentration reaches its equilibrium value, radon flux density from the Earth?s surface, and convective radon transport velocity. The method is based on soil gas radon concentration measurements and is appropriate in the case of relatively uniform geology.

3 Reads
  • Source
    • "Radon was determined immediately in the field, due to its halflife (3.8 days), using a RAD7 Durridge Ò alpha spectrometry instrument . Radon fluxes were measured applying the method of Yakovleva (2005) at two depths of 20 and 70 cm, respectively. A volume of 60 cm 3 soil–gas was extracted from soil at a depths of 20 and 70 cm. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A geochemical survey, in shallow aquifers and soils, has been carried out to evaluate the feasibility of natural gas (CH4) storage in a deep saline aquifer at Rivara (MO), Northern Italy. This paper discusses the areal distribution of CO2 and CH4 fluxes and CO2, CH4, Rn, He, H2 concentrations both in soils and shallow aquifers above the proposed storage reservoir. The distribution of pathfinder elements such as 222Rn, He and H2 has been studied in order to identify potential faults and/or fractures related to preferential migration pathways and the possible interactions between the reservoir and surface. A geochemical and isotopic characterization of the ground waters circulating in the first 200 m has allowed to investigation of i) the origin of the circulating fluids, ii) the gas-water-rock interaction processes, iii) the amount of dissolved gases and/or their saturation status. In the first 200 m, the presence of CH4-rich reducing waters are probably related to organic matter (peat) bearing strata which generate shallow-derived CH4, as elsewhere in the Po Plain. On the basis of isotopic analysis, no hints of thermogenic CH4 gas leakage from a deeper reservoir have been shown. The 13C(CO2) both in ground waters and free gases suggests a prevalent shallow origin of CO2 (i.e. organic and/or soil-derived). The acquisition of pre-injection data is strategic for the natural gas storage development project and as a baseline for future monitoring during the gas injection/withdrawing period. Such a geochemical approach is considered as a methodological reference model for future CO2/CH4 storage projects.
    Applied Geochemistry 12/2012; 34. DOI:10.1016/j.apgeochem.2012.11.008 · 2.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Soil radon concentration levels in Deir Abu-Said District, Irbid, Jordan were measured for several depths using CR-39 detectors, in the summer 2004 for six geological formations, namely, Wadi umm ghudran (WG), Wadi esSir “massive” limestone, Amman silicified limestone (ASL), Al-Hisa phosphatic limestone (AHP), Muwaqqar chalky-marl (MCM), and Basalt. Using a model (Yakovleva in Ann Geophys 48(1):195–198, 2005) based on the solution of the diffusion equation in the quasi-homogenous approximation, the characteristics of radon transport were calculated. Radon flux density from the Earth’s surface, the depth Z eq, at which the equilibrium value of soil radon concentration is reached and the convective radon flux velocity (v) for the different soils are calculated and found to be consistent with similar values presented elsewhere. Calculations indicate that the soil covering WG has a low radon risk while, on the contrary, AHP has a higher radon risk as expected, since AHP has higher content of uranium. The other formations have intermediate values. The results of the present study confirm the statement by Yakovleva (Ann Geophys 48(1):195–198, 2005) that two measurements suffice in order to estimate the characteristics of soil radon transport.
    Environmental Geology 06/2008; 55(1):29-35. DOI:10.1007/s00254-007-0961-x · 1.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The comparison of kinematics and dynamic parameters of radon and molecular hydrogen concentration in subsoil air on the stations network at the Petropavlovsk-Kamchatsky geodynamic proving ground with seismicity of the northern flank of the Kuril-Kamchatka subduction zone was fulfilled in the period from July till August 2004. On the basis of correlation analysis of the regional seismicity and variations of radon flux density calculated using the data of gas-discharge counters of STS-6 type and SSNTDs it was shown that the radon mass transfer abnormal variations are conditioned by both regional seismicity in total and the subduction zone of proving ground. The azimuths of «geodeformation waves» coming to the registration points are calculated during clearly expressed anomaly beginnings, which coincide with directions to earthquake epicenters taking place at the same time. The geochemical anomalies recorded are presumptively deformative by nature and can be conditioned by processes of «quasi-viscous» flow of the lithosphere during rearrangement of tectonic stress fields of the subduction zone. The short-term (predicted time ? <14 days) precursor of the earthquakes swarm was revealed in hydrogen dynamics on August, 4-5 (four earthquakes had M?5.3 and epicentral distance about 130 km from the Paratunka base station).
Show more


3 Reads
Available from