Impact of the global economic crisis on metal levels in particulate matter (PM) at an urban area in the Cantabria Region (Northern Spain).

Universidad de Cantabria, Dep. Ingeniería Química y Química Inorgánica, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain.
Environmental Pollution (Impact Factor: 3.73). 03/2011; 159(5):1129-35. DOI: 10.1016/j.envpol.2011.02.008
Source: PubMed

ABSTRACT Air pollution by particulate matter is well linked with anthropogenic activities; the global economic crisis that broke out in the last year may be a proper indicator of this close relationship. Some economic indicators show the regional effects of the crisis on the Cantabria Region. The present work aims to evaluate the impact of the economic crisis on PM10 levels and composition at the major city of the region, Santander. Some metals linked to anthropogenic activities were measured at Santander and studied by Positive Matrix Factorization; this statistical analysis allowed to identify three main factors: urban background, industrial and molybdenum-related factor. The main results show that the temporal trend of the levels of the industrial tracers found in the present study are well agree with the evolution of the studied economic indicators; nevertheless, the urban background tracers and PM10 concentration levels are not well correlated with the studied economic indicators.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arsenic is a toxic element that affects human health and is widely distributed in the environment. In the area of study, the main Spanish and second largest European industrial ceramic cluster, the main source of arsenic aerosol is related to the impurities in some boracic minerals used in the ceramic process. Epidemiological studies on cancer occurrence in Spain points out the study region as one with the greater risk of cancer. Concentrations of particulate matter and arsenic content in PM10 and PM2.5 were measured and characterized by ICP-MS in the area of study during the years 2005–2010. Concentrations of PM10 and its arsenic content range from 27 to 46 μg/m3 and from 0.7 to 6 ng/m3 in the industrial area, respectively, and from 25 to 40 μg/m3 and from 0.7 to 2.8 ng/m3 in the urban area, respectively. Concentrations of PM2.5 and its arsenic content range from 12 to 14 μg/m3 and from 0.5 to 1.4 ng/m3 in the urban background area, respectively. Most of the arsenic content is present in the fine fraction, with ratios of PM2.5/PM10 in the range of 0.65–0.87. PM10, PM2.5, and its arsenic content show a sharp decrease in recent years associated with the economic downturn, which severely hit the production of ceramic materials in the area under study. The sharp production decrease due to the economic crisis combined with several technological improvements in recent years such as substitution of boron, which contains As impurities as raw material, have reduced the concentrations of PM10, PM2.5, and As in air to an extent that currently meets the existing European regulations.
    Environmental Science and Pollution Research 07/2014; 21(1):695-703. · 2.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background In recent years, Spain has implemented a number of air quality control measures that are expected to lead to a future reduction in fine particle concentrations and an ensuing positive impact on public health. Objectives We aimed to assess the impact on mortality attributable to a reduction in fine particle levels in Spain in 2014 in relation to the estimated level for 2007. Methods To estimate exposure, we constructed fine particle distribution models for Spain for 2007 (reference scenario) and 2014 (projected scenario) with a spatial resolution of 16×16 km2. In a second step, we used the concentration–response functions proposed by cohort studies carried out in Europe (European Study of Cohorts for Air Pollution Effects and Rome longitudinal cohort) and North America (American Cancer Society cohort, Harvard Six Cities study and Canadian national cohort) to calculate the number of attributable annual deaths corresponding to all causes, all non-accidental causes, ischemic heart disease and lung cancer among persons aged over 25 years (2005–2007 mortality rate data). We examined the effect of the Spanish demographic shift in our analysis using 2007 and 2012 population figures. Results Our model suggested that there would be a mean overall reduction in fine particle levels of 1 µg/m3 by 2014. Taking into account 2007 population data, between 8 and 15 all-cause deaths per 100,000 population could be postponed annually by the expected reduction in fine particle levels. For specific subgroups, estimates varied from 10 to 30 deaths for all non-accidental causes, from 1 to 5 for lung cancer, and from 2 to 6 for ischemic heart disease. The expected burden of preventable mortality would be even higher in the future due to the Spanish population growth. Taking into account the population older than 30 years in 2012, the absolute mortality impact estimate would increase approximately by 18%. Conclusions Effective implementation of air quality measures in Spain, in a scenario with a short-term projection, would amount to an appreciable decline in fine particle concentrations, and this, in turn, would lead to notable health-related benefits. Recent European cohort studies strengthen the evidence of an association between long-term exposure to fine particles and health effects, and could enhance the health impact quantification in Europe. Air quality models can contribute to improved assessment of air pollution health impact estimates, particularly in study areas without air pollution monitoring data.
    Environmental Research 01/2014; 128:15–26. · 3.24 Impact Factor
  • Source
    Atmospheric Environment 12/2014; 98:519-529. · 3.06 Impact Factor