Article

Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection.

Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse, 30, 81675 Munich, Germany.
Journal of Hepatology (Impact Factor: 9.86). 03/2011; 55(5):996-1003. DOI:10.1016/j.jhep.2011.02.015
Source: PubMed

ABSTRACT The molecular biology of hepatitis B virus (HBV) has been extensively studied but the exact role of the hepatitis B X protein (HBx) in the context of natural HBV infections remains unknown.
Primary human hepatocytes and differentiated HepaRG cells allowing conditional trans complementation of HBx were infected with wild type (HBV(wt)) or HBx deficient (HBV(x-)) HBV particles and establishment of HBV replication was followed.
We observed that cells inoculated with HBx-deficient HBV particles (HBV(x-)) did not lead to productive HBV infection contrary to cells inoculated with wild type HBV particles (HBV(wt)). Although equal amounts of nuclear covalently closed circular HBV-DNA (cccDNA) demonstrated comparable uptake and nuclear import, active transcription was only observed from HBV(wt) genomes. Trans-complementation of HBx was able to rescue transcription from the HBV(x-) genome and led to antigen and virion secretion, even weeks after infection. Constant expression of HBx was necessary to maintain HBV antigen expression and replication. Finally, we demonstrated that HBx is not packaged into virions during assembly but is expressed after infection within the new host cell to allow epigenetic control of HBV transcription from cccDNA.
Our results demonstrate that HBx is required to initiate and maintain HBV replication and highlight HBx as the key regulator during the natural infection process.

1 0
 · 
0 Bookmarks
 · 
152 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Current antivirals can control but not eliminate hepatitis-B-virus (HBV), because HBV establishes a stable nuclear cccDNA. Interferon-α treatment can clear HBV but is limited by systemic side effects. Here, we describe how interferon-α can induce specific degradation of the nuclear viral DNA without hepatotoxicity and propose lymphotoxin-β-receptor activation as a therapeutic alternative. Interferon-α and lymphotoxin-β-receptor activation up-regulated APOBEC3A and 3B cytidine-deaminases, respectively, in HBV-infected cells, primary hepatocytes and human liver-needle biopsies. HBV-core protein mediated the interaction with nuclear cccDNA resulting in cytidine-deamination, apurinic/apyrimidinic site formation and finally cccDNA degradation that prevented HBV-reactivation. Genomic DNA was not affected. Thus, inducing nuclear deaminases - e.g., by lymphotoxin-β-receptor activation - allows development of new therapeutics that combined with existing antivirals may cure hepatitis B.
    Science 02/2014; · 31.20 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Introduction: Hepatitis B virus (HBV) is a major cause of chronic liver disease (CLD) and hepatocellular carcinoma (HCC) worldwide. More than 350 million people are at risk for HCC, and with few treatment options available, therapeutic approaches to targets other than the virus polymerase will be needed. This review suggests that the HBV-encoded X protein, HBx, would be an outstanding target because it contributes to the biology and pathogenesis of HBV in three fundamental ways. Areas covered: First, HBx is a trans-activating protein that stimulates virus gene expression and replication, thereby promoting the development and persistence of the carrier state. Second, HBx partially blocks the development of immune responses that would otherwise clear the virus, and protects infected hepatocytes from immune-mediated destruction. Thus, HBx contributes to the development of CLD without virus clearance. Third, HBx alters patterns of host gene expression that make possible the emergence of HCC. The selected literature cited is from the National Library of Medicine (Pubmed and Medline). Expert opinion: Understanding the mechanisms, whereby HBx supports virus replication and promotes pathogenesis, suggests that HBx will be an important therapeutic target against both virus replication and CLD aimed at the chemoprevention of HCC.
    Expert opinion on therapeutic targets 01/2014; · 3.72 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Hepatitis B virus (HBV) is a DNA virus with complex replication, and high replication and mutation rates, leading to a heterogeneous viral population. The population is comprised of genomes that are closely related, but not identical; hence, HBV is considered a viral quasispecies. Quasispecies variability may be somewhat limited by the high degree of overlapping between the HBV coding regions, which is especially important in the P and S gene overlapping regions, but is less significant in the X and preCore/Core genes. Despite this restriction, several clinically and pathologically relevant variants have been characterized along the viral genome. Next-generation sequencing (NGS) approaches enable high-throughput analysis of thousands of clonally amplified regions and are powerful tools for characterizing genetic diversity in viral strains. In the present review, we update the information regarding HBV variability and present a summary of the various NGS approaches available for research in this virus. In addition, we provide an analysis of the clinical implications of HBV variants and their study by NGS.
    World Journal of Gastroenterology 11/2013; 19(41):6995-7023. · 2.55 Impact Factor