An anticancer agent icaritin induces sustained activation of the extracellular signal-regulated kinase (ERK) pathway and inhibits growth of breast cancer cells.

Department of Medical Microbiology and Immunology, Creighton University Medical School, 2500 California Plaza, Omaha, NE 68178, USA.
European journal of pharmacology (Impact Factor: 2.59). 03/2011; 658(2-3):114-22. DOI: 10.1016/j.ejphar.2011.02.005
Source: PubMed

ABSTRACT Icaritin, a prenylflavonoid derivative from Epimedium Genus, regulates many cellular processes. However, the function and the underlying mechanisms of icaritin in breast cancer cell growth have not been well established. Here, we report that icaritin strongly inhibited the growth of breast cancer MDA-MB-453 and MCF7 cells. At concentrations of 2-3 μM, icaritin induced cell cycle arrest at the G(2)/M phase accompanied by a down-regulation of the expression levels of the G(2)/M regulatory proteins such as cyclinB, cdc2 and cdc25C. Icaritin at concentrations of 4-5 μM, however, induced apoptotic cell death characterized by the accumulation of the annexin V- and propidium iodide-positive cells, cleavage of poly ADP-ribose polymerase (PARP) and down-regulation of the Bcl-2 expression. In addition, icaritin also induced a sustained phosphorylation of extracellular signal-regulated kinase (ERK) in these breast cancer cells. U0126, a specific ERK activation inhibitor, abrogated icaritin-induced G2/M cell cycle arrest and cell apoptosis. Icaritin more potently inhibited growth of the breast cancer stem/progenitor cells compared to anti-estrogen tamoxifen. Our results indicate that icaritin is a potent growth inhibitor for breast cancer cells and provide a rationale for preclinical and clinical evaluations of icaritin for breast cancer therapy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim:To explore whether icaritin, a prenylflavonoid derivative of the Chinese tonic herb Epimedium, could suppress the proliferation of human osteosarcoma cells in vitro, and to elucidate the mechanisms of the action.Methods:Human osteosarcoma SaOS2 cell line was used in the present study. The proliferation of the cells was examined using MTT assay and immunofluorescence DAPI staining. Cell motility was studied with the scratch assay. Cell apoptosis was determined by Annexin V-FITC and PI double staining using flow cytometry. Western blotting and RT-PCR were used to measure the expression of mRNAs and proteins in the cells.Results:Icaritin (5-15 μmol/L) suppressed the proliferation of SaOS2 cells in vitro in a dose-dependent manner. Furthermore, the cell motility was significantly decreased after exposure to icaritin. Moreover, icaritin (5 μmol/L) time-dependently induced the apoptosis of SaOS2 cells, markedly suppressed MMP-2 and MMP-9 expression, upregulated caspase-3 and caspase-9 expression, and increased the level of cleaved caspase-3 in the cells. Co-exposure to the caspase-3 inhibitor zVAD-fmk (10 μmol/L) compromised the icaritin-induced caspase-3 expression and apoptosis in SaOS2 cells.Conclusion:Icaritin suppresses the proliferation of SaOS2 human osteosarcoma cells by increasing apoptosis and downregulating MMP expression.
    Acta Pharmacologica Sinica 03/2014; · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Icaritin (ICT), a hydrolytic product of icariin from Epimedium genus, exhibits antitumor activities in several human solid-tumor and myeloid leukemia cells with extensive influence on various cell signal molecules, such as MAPKs being involved in cell proliferation and Bcl-2 participating in cell apoptosis. However, the effect of icaritin on Burkitt Lymphoma has not been elucidated. In the present study, we first screened the potential effect of icaritin on Burkitt lymphoma Raji and P3HR-1 cell lines and found that icaritin showed cytotoxicity in both cell lines. We further found that icaritin could significantly inhibit Raji cells proliferation with S-phase arrest of cell cycle and induced cell apoptosis accompanied by activation of caspase-8 and caspase-9 and cleavage of PARP. We also observed that icaritin was able to decrease Bcl-2 levels, thus shifting the Bcl-2/Bax ratio, and it could obviously reduce c-Myc, a specific molecular target in Burkitt lymphoma. Our findings demonstrated that icaritin showed cytotoxicity, inhibited cell growth, caused S arrest, and induced apoptosis in Burkitt lymphoma cells and provided a rationale for the further evaluation of icaritin for Burkitt lymphoma therapy.
    BioMed Research International 01/2014; 2014:391512. · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer stem cells (CSCs) are a subpopulation of cancer cells with high clonogenic capacity and ability to reform parental tumours upon transplantation. Resistance to therapy has been shown for several types of CSC and, therefore, they have been proposed as the cause of tumour relapse. Consequently, much effort has been made to design molecules that can target CSCs specifically and sensitize them to therapy. In this review, we summarize the mechanisms underlying CSC resistance, the potential biological targets to overcome resistance and the chemical compounds showing activity against different types of CSC. The chemical compounds discussed here have been divided according to their origin: natural, natural-derived and synthetic compounds.
    Drug discovery today 05/2014; · 6.63 Impact Factor

Full-text (2 Sources)

Available from
Dec 2, 2014