Constitutive Gs activation using a single-construct tetracycline-inducible expression system in embryonic stem cells and mice

Gladstone Institute of Cardiovascular Disease, 1650 Owens St,, San Francisco, CA 94158, USA.
Stem Cell Research & Therapy (Impact Factor: 3.37). 03/2011; 2(2):11. DOI: 10.1186/scrt52
Source: PubMed


The controlled expression of many genes, including G-protein coupled receptors (GPCRs), is important for delineating gene functions in complex model systems. Binary systems for inducible regulation of transgene expression are widely used in mice. One system is the tTA/TRE expression system, composed of a tetracycline-dependent DNA binding factor and a separate tetracycline operon. However, the requirement for two separate transgenes (one for each tTA or TRE component) makes this system less amenable to models requiring directed cell targeting, increases the risk of multiple transgene integration sites, and requires extensive screening for appropriately-functioning clones.
We developed a single, polycistronic tetracycline-inducible expression platform to control the expression of multiple cistrons in mammalian cells. This platform has three basic constructs: regulator, responder, and destination vectors. The modular platform is compatible with both the TetOff (tTA) and TetOn (rtTA) systems. The modular Gateway recombineering-compatible components facilitate rapidly generating vectors to genetically modify mammalian cells. We apply this system to use the elongation factor 1α (EF1α) promoter to drive doxycycline-regulated expression of both the fluorescent marker mCherry and an engineered Gs-coupled GPCR "Rs1" separated by a 2A ribosomal skip site.
We show that our combined expression construct drives expression of both the mCherry and Rs1 transgenes in a doxycycline-dependent manner. We successfully target the expression construct into the Rosa26 locus of mouse embryonic stem (ES) cells. Rs1 expression in mouse ES cells increases cAMP accumulation via both basal and ligand-induced Gs mechanisms and is associated with increased embryoid body size. Heterozygous mice carrying the Rs1 expression construct showed normal growth and weight, and developed small increases in bone formation that could be observed in the calvaria.
Our results demonstrate the feasibility of a single-vector strategy that combines both the tTA and TRE tetracycline-regulated components for use in cells and mouse models. Although the EF1α promoter is useful for driving expression in pluripotent cells, a single copy of the EF1α promoter did not drive high levels of mCherry and Rs1 expression in the differentiated tissues of adult mice. These findings indicate that promoter selection is an important factor when developing transgene expression models.

Download full-text


Available from: Bruce Conklin, Mar 26, 2014
10 Reads
  • Source
    • "Indeed, the tetracycline-dependent (Tet) system has been used for renal-specific Cre expression and subsequent inactivation of the tuberous sclerosis complex-1 (Tsc-1) when doxycycline is administered in the drinking water [31]. However, some difficulties in activating this doxycycline-dependent system in certain tissues have been reported [32], [33], [34]. By contrast, gene expression is significantly reduced in all the tissues analyzed from both Vhlfloxed-UBC-Cre-ERT2 and Hif1αfloxed-UBC-Cre-ERT2 mouse lines exposed to tamoxifen diet. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Von Hippel Lindau (Vhl) gene inactivation results in embryonic lethality. The consequences of its inactivation in adult mice, and of the ensuing activation of the hypoxia-inducible factors (HIFs), have been explored mainly in a tissue-specific manner. This mid-gestation lethality can be also circumvented by using a floxed Vhl allele in combination with an ubiquitous tamoxifen-inducible recombinase Cre-ER(T2). Here, we characterize a widespread reduction in Vhl gene expression in Vhl(floxed)-UBC-Cre-ER(T2) adult mice after dietary tamoxifen administration, a convenient route of administration that has yet to be fully characterized for global gene inactivation. Vhl gene inactivation rapidly resulted in a marked splenomegaly and skin erythema, accompanied by renal and hepatic induction of the erythropoietin (Epo) gene, indicative of the in vivo activation of the oxygen sensing HIF pathway. We show that acute Vhl gene inactivation also induced Epo gene expression in the heart, revealing cardiac tissue to be an extra-renal source of EPO. Indeed, primary cardiomyocytes and HL-1 cardiac cells both induce Epo gene expression when exposed to low O(2) tension in a HIF-dependent manner. Thus, as well as demonstrating the potential of dietary tamoxifen administration for gene inactivation studies in UBC-Cre-ER(T2) mouse lines, this data provides evidence of a cardiac oxygen-sensing VHL/HIF/EPO pathway in adult mice.
    PLoS ONE 07/2011; 6(7):e22589. DOI:10.1371/journal.pone.0022589 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Integrative gene transfer is widely used for bioproduction, drug screening and therapeutic applications but usual viral methods lead to random and multicopy insertions, contribute to unstable transgene expression and can disturb endogenous gene expression. Homologous targeting of an expression cassette using rare-cutting endonucleases is a potential solution; however the number of studied loci remains limited. Furthermore, the behavior and performance of various types of gene cassettes following gene targeting is poorly defined. Here we have evaluated three loci for gene targeting, including one locus compatible with the proposed Safe Harbor criteria for human translational applications. Using optimized conditions for homologous gene targeting, reporter genes under the control of different promoters were efficiently inserted at each locus in both sense and antisense orientations. Sustainable expression was achieved at all three loci without detectable disturbance of flanking gene expression. However, the promoter, the integration locus and the cassette orientation have a strong impact on transgene expression. Finally, single targeted integrations exhibited greatly improved transgene expression stability versus multicopy or random integration. Taken together, our data suggest a potential set of loci for site-specific transgene integration, suitable for a variety of biotechnological applications. Biotechnol. Bioeng. © 2013 Wiley Periodicals, Inc.
    Biotechnology and Bioengineering 08/2013; 110(8). DOI:10.1002/bit.24892 · 4.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elucidating the roles of neuronal cell types for physiology and behavior is essential for understanding brain functions. Perturbation of neuron electrical activity can be used to probe the causal relationship between neuronal cell types and behavior. New genetically encoded neuron perturbation tools have been developed for remotely controlling neuron function using small molecules that activate engineered receptors that can be targeted to cell types using genetic methods. Here we describe recent progress for approaches using genetically engineered receptors that selectively interact with small molecules. Called "chemogenetics," receptors with diverse cellular functions have been developed that facilitate the selective pharmacological control over a diverse range of cell-signaling processes, including electrical activity, for molecularly defined cell types. These tools have revealed remarkably specific behavioral physiological influences for molecularly defined cell types that are often intermingled with populations having different or even opposite functions.
    Annual Review of Neuroscience 06/2014; 37(1). DOI:10.1146/annurev-neuro-071013-014048 · 19.32 Impact Factor
Show more