Article

Construction of vectors for inducible and constitutive gene expression in Lactobacillus

Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, USA.
Microbial Biotechnology (Impact Factor: 3.21). 09/2010; 4(3):357-67. DOI: 10.1111/j.1751-7915.2010.00200.x
Source: PubMed

ABSTRACT Microarray analysis of the genome of Lactobacillus acidophilus identified a number of operons that were differentially expressed in response to carbohydrate source or constitutively expressed regardless of carbohydrate source. These included operons implicated in the transport and catabolism of fructooligosaccharides (FOS), lactose (lac), trehalose (tre) and genes directing glycolysis. Analysis of these operons identified a number of putative promoter and repressor elements, which were used to construct a series of expression vectors for use in lactobacilli, based on the broad host range pWV01 replicon. A β-glucuronidase (GusA3) reporter gene was cloned into each vector to characterize expression from each promoter. GUS reporter assays showed FOS, lac and tre based vectors to be highly inducible by their specific carbohydrate and repressed by glucose. Additionally, a construct based on the phosphoglycerate mutase (pgm) promoter was constitutively highly expressed. To demonstrate the potential utility of these vectors, we constructed a plasmid for the overexpression of the oxalate degradation pathway (Frc and Oxc) of L. acidophilus NCFM. This construct was able to improve oxalate degradation by L. gasseri ATCC 33323 and compliment a L. acidophilus oxalate-deficient mutant. Development of these expression vectors could support several novel applications, including the expression of enzymes, proteins, vaccines and biotherapeutics by intestinal lactobacilli.

Download full-text

Full-text

Available from: Maria Andrea Azcárate-Peril, Apr 02, 2014
0 Followers
 · 
212 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To acquire the ability to recognize and destroy virus and plasmid invaders, prokaryotic CRISPR-Cas systems capture fragments of DNA within the host CRISPR locus. Our results indicate that the process of adaptation by a Type II-A CRISPR-Cas system in Streptococcus thermophilus requires Cas1, Cas2, and Csn2. Surprisingly, we found that Cas9, previously identified as the nuclease responsible for ultimate invader destruction, is also essential for adaptation. Cas9 nuclease activity is dispensable for adaptation. In addition, our studies revealed extensive, unbiased acquisition of the self-targeting host genome sequence by the CRISPR-Cas system that is masked in the presence of active target destruction. © 2015 Wei et al.; Published by Cold Spring Harbor Laboratory Press.
    Genes & Development 02/2015; 29(4):356-61. DOI:10.1101/gad.257550.114 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lactic acid bacteria (LAB) are a diverse group of Gram-positive, nonsporulating, low G + C content bacteria. Many of them have been given generally regarded as safe status. Over the past two decades, intensive genetic and molecular research carried out on LAB, mainly Lactococcus lactis and some species of the Lactobacillus genus, has revealed new, potential biomedical LAB applications, including the use of LAB as adjuvants, immunostimulators, or therapeutic drug delivery systems, or as factories to produce therapeutic molecules. LAB enable immunization via the mucosal route, which increases effectiveness against pathogens that use the mucosa as the major route of entry into the human body. In this review, we concentrate on the encouraging application of Lactococcus and Lactobacillus genera for the development of live mucosal vaccines. First, we present the progress that has recently been made in the field of developing tools for LAB genetic manipulations, which has resulted in the successful expression of many bacterial, parasitic, and viral antigens in LAB strains. Next, we discuss the factors influencing the efficacy of the constructed vaccine prototypes that have been tested in various animal models. Apart from the research focused on an application of live LABs as carriers of foreign antigens, a lot of work has been recently done on the potential usage of nonliving, nonrecombinant L. lactis designated as Gram-positive enhancer matrix (GEM), as a delivery system for mucosal vaccination. The advantages and disadvantages of both strategies are also presented.
    Applied Microbiology and Biotechnology 03/2015; 99(7). DOI:10.1007/s00253-015-6498-0 · 3.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lactobacilli are widespread in natural environments and are increasingly being investigated as potential health modulators. In this study, we have adapted the broad-host-range vector pNZ8048 to express the mCherry protein (pRCR) to expand the usage of the mCherry protein for analysis of gene expression in Lactobacillus. This vector is also able to replicate in Streptococcus pneumoniae and Escherichia coli. The usage of pRCR as a promoter probe was validated in Lactobacillus acidophilus by characterizing the regulation of lactacin B expression. The results show that the regulation is exerted at the transcriptional level, with lbaB gene expression being specifically induced by co-culture of the L. acidophilus bacteriocin producer and the S. thermophilus STY-31 inducer bacterium.
    Journal of Industrial Microbiology and Biotechnology 12/2014; 42(2). DOI:10.1007/s10295-014-1567-4 · 2.51 Impact Factor