Cytotoxic Evaluation of 3-Aminopyridine-2-Carboxaldehyde Thiosemicarbazone, 3-AP, in Peripheral Blood Lymphocytes of Patients with Refractory Solid Tumors using Electron Paramagnetic Resonance.

University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, 600 Highland Ave., Room K4/554, Madison, WI 53792-5669, United States.
Experimental and therapeutic medicine (Impact Factor: 1.27). 01/2011; 2(1):119-123. DOI: 10.3892/etm.2010.165
Source: PubMed


PURPOSE: 3-AP (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is a metal chelator that potently inhibits the enzyme ribonucleotide reductase, RR, which plays a key role in cell division and tumor progression. A sub-unit of RR has a non-heme iron and a tyrosine free radical, which are required for the enzymatic reduction of ribonucleotides to deoxyribonucleotides. The objective of the study was to determine whether 3-AP affects its targeted action by measuring EPR signals formed either directly or indirectly from low molecular weight ferric-3-AP chelates. METHODS: Peripheral blood lymphocytes were collected from patients with refractory solid tumors at baseline and at 2, 4.5 and 22 hours after 3-AP administration. EPR spectra were used to identify signals from high-spin Fe-transferrin, high-spin heme and low-spin iron or copper ions. RESULTS: An increase in Fe-transferrin signal was observed, suggesting blockage of Fe uptake. It is hypothesized that formation of reactive oxygen species by FeT(2) or CuT damage transferrin or the transferrin receptor. An increase in heme signal was also observed, which is a probable source of cytochrome c release from the mitochondria and potential apoptosis. In addition, increased levels of Fe and Cu were identified. CONCLUSION: These results, which were consistent with our earlier study validating 3-AP-mediated signals by EPR, provide valuable insights into the in vivo mechanism of action of 3-AP.

8 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribonucleotide reductase (RR) is a crucial enzyme in de novo DNA synthesis, where it catalyses the rate determining step of dNTP synthesis. RRs consist of a large subunit called RR1 (α), that contains two allosteric sites and one catalytic site, and a small subunit called RR2 (β), which houses a tyrosyl free radical essential for initiating catalysis. The active form of mammalian RR is an α(n)β(m) hetero oligomer. RR inhibitors are cytotoxic to proliferating cancer cells. In this brief review we will discuss the three classes of RR, the catalytic mechanism of RR, the regulation of the dNTP pool, the substrate selection, the allosteric activation, inactivation by ATP and dATP, and the nucleoside drugs that target RR. We will also discuss possible strategies for developing a new class of drugs that disrupts the RR assembly.
    Pharmaceuticals 10/2011; 4(10):1328-1354. DOI:10.3390/ph4101328
  • [Show abstract] [Hide abstract]
    ABSTRACT: Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine(®) has demonstrated activity against other tumors. Critical issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it.
    Antioxidants & Redox Signaling 08/2012; 18(8). DOI:10.1089/ars.2012.4880 · 7.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A review. This review gives an account of the coordination chem. of thiosemicarbazone ligands with three (tridentate) or four (tetradentate) potential donor atoms. The syntheses and structures of the ligands complexes are described according to the donor atom combinations and metals involved. The review also covers the biol. activities of the ligands and complexes in the context of their applications as therapeutic or diagnostic PET or SPECT imaging agents. [on SciFinder(R)]
    Inorganica Chimica Acta 09/2012; 389(36):3-15. DOI:10.1016/j.ica.2012.02.019 · 2.05 Impact Factor
Show more

Similar Publications