Article

Belatacept-based regimens are associated with improved cardiovascular and metabolic risk factors compared with cyclosporine in kidney transplant recipients (BENEFIT and BENEFIT-EXT studies).

Nephrology Department, University Hospital Leuven, Leuven, Belgium.
Transplantation (Impact Factor: 3.78). 03/2011; 91(9):976-83. DOI: 10.1097/TP.0b013e31820c10eb
Source: PubMed

ABSTRACT Cardiovascular disease, the most common cause of death with a functioning graft among kidney transplant recipients, can be exacerbated by immunosuppressive drugs, particularly the calcineurin inhibitors. Belatacept, a selective co-stimulation blocker, may provide a better cardiovascular/metabolic risk profile than current immunosuppressants.
Cardiovascular and metabolic endpoints from two Phase III studies (BENEFIT and BENEFIT-EXT) of belatacept-based regimens in kidney transplant recipients were assessed at month 12. Each study assessed belatacept in more intensive (MI) and less intensive (LI) regimens versus cyclosporine A (CsA). These secondary endpoints included changes in blood pressure, changes in serum lipids, and the incidence of new-onset diabetes after transplant (NODAT).
A total of 1209 patients were randomized and transplanted across the two studies. Mean systolic blood pressure was 6 to 9 mm Hg lower and mean diastolic blood pressure was 3 to 4 mm Hg lower in the MI and LI groups versus CsA (P ≤ 0.002) across both studies at month 12. Non-HDL cholesterol was lower in the belatacept groups versus CsA (P<0.01 MI or LI vs. CsA in each study). Serum triglycerides were lower in the belatacept groups versus CsA (P<0.02 MI or LI vs. CsA in each study). NODAT occurred less often in the belatacept groups versus CsA in a prespecified pooled analysis (P<0.05 MI or LI vs. CsA).
At month 12, belatacept regimens were associated with better cardiovascular and metabolic risk profiles, with lower blood pressure and serum lipids and less NODAT versus CsA. The overall profile of belatacept will continue to be assessed over the 3-year trials.

0 Bookmarks
 · 
127 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Selective targeting of CD28 might represent an effective immunomodulation strategy by preventing T cell costimulation, while favoring coinhibition since inhibitory signals transmitted through CTLA-4; PD-L1 and B7 would not be affected. We previously showed in vitro and in vivo that anti-CD28 antagonists suppress effector T cells while enhancing regulatory T cell (Treg) suppression and immune tolerance. Here, we evaluate FR104, a novel antagonist pegylated anti-CD28 Fab' antibody fragment, in nonhuman primate renal allotransplantation. FR104, in association with low doses of tacrolimus or with rapamycin in a steroid-free therapy, prevents acute rejection and alloantibody development and prolongs allograft survival. However, when FR104 was associated with mycophenolate mofetil and steroids, half of the recipients rejected their grafts prematurely. Finally, we observed an accumulation of Helios-negative Tregs in the blood and within the graft after FR104 therapy, confirmed by Treg-specific demethylated region DNA analysis. In conclusion, FR104 reinforces immunosuppression in calcineurin inhibitor (CNI)-low or CNI-free protocols, without the need of steroids. Accumulation of intragraft Tregs suggested the promotion of immunoregulatory mechanisms. Selective CD28 antagonists might become an alternative CNI-sparing strategy to B7 antagonists for kidney transplant recipients.
    American Journal of Transplantation 12/2014; 15(1). DOI:10.1111/ajt.12964 · 6.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Most people who receive a kidney transplant die from either cardiovascular disease or cancer before their transplant fails. The most common reason for someone with a kidney transplant to lose the function of their transplanted kidney necessitating return to dialysis is chronic kidney transplant scarring. Immunosuppressant drugs have side effects that increase risks of cardiovascular disease, cancer and chronic kidney transplant scarring. Belatacept may provide sufficient immunosuppression while avoiding unwanted side effects of other immunosuppressant drugs. However, high rates of post-transplant lymphoproliferative disease (PTLD) have been reported when belatacept is used in particular kidney transplant recipients at high dosage. Objectives 1) Compare the relative efficacy of belatacept versus any other primary immunosuppression regimen for preventing acute rejection, maintaining kidney transplant function, and preventing death. 2) Compare the incidence of several adverse events: PTLD; other malignancies; chronic transplant kidney scarring (IF/TA); infections; change in blood pressure, lipid and blood sugar control. 3) Assess any variation in effects by study, intervention and recipient characteristics, including: differences in pre-transplant Epstein Barr virus serostatus; belatacept dosage; and donor-category (living, standard criteria deceased, or extended criteria deceased). Search methods We searched the Cochrane Renal Group's Specialised Register to 1 September 2014 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. Selection criteria Randomised controlled trials (RCT) that compared belatacept versus any other immunosuppression regimen in kidney transplant recipients were eligible for inclusion. Data collection and analysis Two authors independently extracted data for study quality and transplant outcomes and synthesized results using random effects meta-analysis, expressed as risk ratios (RR) and mean differences (MD), both with 95% confidence intervals (CI). Subgroup analyses and univariate meta-regression were used to investigate potential heterogeneity. Main results We included five studies that compared belatacept and calcineurin inhibitors (CNI) that reported data from a total of 1535 kidney transplant recipients. Of the five studies, three (478 participants) compared belatacept and cyclosporin and two (43 recipients) compared belatacept and tacrolimus. Co-interventions included basiliximab (4 studies, 1434 recipients); anti-thymocyte globulin (1 study, 89 recipients); alemtuzumab (1 study, 12 recipients); mycophenolate mofetil (MMF, 5 studies, 1509 recipients); sirolimus (1 study, 26 recipients) and prednisone (5 studies, 1535 recipients). Up to three years following transplant, belatacept and CNI-treated recipients were at similar risk of dying (4 studies, 1516 recipients: RR 0.75, 95% CI 0.39 to 1.44), losing their kidney transplant and returning to dialysis (4 studies, 1516 recipients: RR 0.91, 95% CI 0.61 to 1.38), and having an episode of acute rejection (4 studies, 1516 recipients: RR 1.56, 95% CI 0.85 to 2.86). Belatacept-treated kidney transplant recipients were 28% less likely to have chronic kidney scarring (3 studies, 1360 recipients: RR 0.72, 95% CI 0.55 to 0.94) and also had better graft function (measured glomerular filtration rate (GFR) (3 studies 1083 recipients): 10.89 mL/min/1.73 m(2), 95% CI 4.01 to 17.77; estimated GFR (4 studies, 1083 recipients): MD 9.96 mL/min/1.73 m(2), 95% CI 3.28 to 16.64) than CNI-treated recipients. Blood pressure was lower (systolic (2 studies, 658 recipients): MD -7.51 mm Hg, 95% CI -10.57 to -4.46; diastolic (2 studies, 658 recipients): MD -3.07 mm Hg, 95% CI -4.83 to -1.31, lipid profile was better (non-HDL (3 studies 1101 recipients): MD -12.25 mg/dL, 95% CI -17.93 to -6.57; triglycerides (3 studies 1101 recipients): MD -24.09 mg/dL, 95% CI -44.55 to -3.64), and incidence of new-onset diabetes after transplant was reduced by 39% (4 studies (1049 recipients): RR 0.61, 95% CI 0.40 to 0.93) among belatacept-treated versus CNI-treated recipients. Risk of PTLD was similar in belatacept and CNI-treated recipients (4 studies, 1516 recipients: RR 2.79, 95% CI 0.61 to 12.66) and was no different among recipients who received different belatacept dosages (high versus low dosage: ratio of risk ratios (RRR) 1.06, 95% CI 0.11 to 9.80, test of difference = 0.96) or among those who were Epstein Barr virus seronegative compared with those who were seropositive before their kidney transplant (seronegative versus seropositive; RRR 1.49, 95% CI 0.15 to 14.76, test for difference = 0.73). The belatacept dose used (high versus low), type of donor kidney the recipient received (extended versus standard criteria) and whether the kidney transplant recipient received tacrolimus or cyclosporin made no difference to kidney transplant survival, incidence of acute rejection or estimated GFR. Selective outcome reporting meant that data for some key subgroup comparisons were sparse and that estimates of the effect of treatment in these groups of recipients remain imprecise. Authors' conclusions There is no evidence of any difference in the effectiveness of belatacept and CNI in preventing acute rejection, graft loss and death, but treatment with belatacept is associated with less chronic kidney scarring and better kidney transplant function. Treatment with belatacept is also associated with better blood pressure and lipid profile and a lower incidence of diabetes versus treatment with a CNI. Important side effects (particularly PTLD) remain poorly reported and so the relative benefits and harms of using belatacept remain unclear. Whether short-term advantages of treatment with belatacept are maintained over the medium-to long-term or translate into better cardiovascular outcomes or longer kidney transplant survival with function remains unclear. Longer-term, fully reported and published studies comparing belatacept versus tacrolimus are needed to help clinicians decide which patients might benefit most from using belatacept.
    Cochrane database of systematic reviews (Online) 11/2014; 11(11):CD010699. DOI:10.1002/14651858.CD010699.pub2 · 5.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: With further reduction in surgical complications and improvement in immunosuppressive protocols, pancreas transplant offers excellent outcomes for patients with diabetes. However, long-term survival of pancreas allograft is affected not only by rejection but also by immunosuppressive regimen toxicity. Areas covered: This article reviews the existing literature and knowledge of tacrolimus toxicity and focuses on its diabetogenic effect after pancreas transplant. Some clinically relevant drug-drug interactions with glucocorticoids and sirolimus are also highlighted. This review also summarizes the diabetogenic mechanisms of tacrolimus, the alternatives to minimize these effects, and the main differential diagnosis of hyperglycemia after pancreas transplant. Expert opinion: Tacrolimus is a potent calcineurin inhibitor, an important pathway that regulates pancreatic development. Tacrolimus can induce β-cell apoptosis, decrease insulin exocytosis and reduce insulin gene transcription, which ultimately lead to impaired functional β-cell mass after pancreas transplant. Furthermore, insulin resistance can exacerbate the diabetogenic effect of tacrolimus due to inhibition of insulin gene transcription and β-cell proliferation. It is important to critically analyze the results of clinical studies and investigate new immunosuppressive drugs and/or novel drug combinations. It is equally important to comprehend and interpret experimental data. Therefore, minimization of side effects, based on safe approaches, can prolong pancreas allograft survival.
    Expert Opinion on Drug Metabolism &amp Toxicology 09/2014; 10(11):1-21. DOI:10.1517/17425255.2014.964205 · 2.93 Impact Factor