Article

Effects of recruitment/derecruitment dynamics on the efficacy of variable ventilation

Vermont Lung Center, Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405, USA.
Journal of Applied Physiology (Impact Factor: 3.43). 03/2011; 110(5):1319-26. DOI: 10.1152/japplphysiol.01364.2010
Source: PubMed

ABSTRACT Variable (or noisy) ventilation (VV) has been demonstrated in animal models of acute lung injury to be superior to constant (or conventional) ventilation (CV), in terms of improved gas exchange and mitigation of lung injury, for reasons that are not entirely clear. We hypothesized that the efficacy of VV is related to the fact that recruitment and derecruitment of lung units are dynamic processes. To test this hypothesis, we modeled the lung computationally as a symmetrically bifurcating airway tree terminating in elastic units. Each airway was fully open or completely closed, at any point in time, according to its pressure history. The model is able to accurately mimic previous experimental measurements showing that the lungs of mice injured by acid aspiration are better recruited after 60 min of VV than CV. The model also shows that recruitment/derecruitment dynamics contribute to the relative efficacy of VV, provided lung units open more rapidly than they close once a critical opening or closing pressure threshold has been crossed. We conclude that the dynamics of recruitment and derecruitment in the lung may be important factors responsible for the benefits of VV compared with CV.

1 Follower
 · 
93 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: External noise is introduced by computer-generated random levels of pressure assistance during noisy pressure support ventilation (PSV). In patients, noisy PSV was associated with higher tidal volume variability but not improved cardio-pulmonary function compared with conventional PSV. The potential role of noisy PSV in the management of critically ill patients requiring ventilatory support has to be explored further.
    Critical care (London, England) 03/2014; 18(2):116. DOI:10.1186/cc13762
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives Variable ventilation (VV) seems to improve respiratory function in acute lung injury and may be combined with positive end-expiratory pressure (PEEP) in order to protect the lungs even in healthy subjects. We hypothesized that VV in combination with moderate levels of PEEP reduce the deterioration of pulmonary function related to general anesthesia. Hence, we aimed at evaluating the alveolar stability and lung protection of the combination of VV at different PEEP levels. Design Randomized experimental study. Setting Animal research facility. Subjects Forty-nine male Wistar rats (200–270 g). Interventions Animals were ventilated during 2 hours with protective low tidal volume (VT) in volume control ventilation (VCV) or VV and PEEP adjusted at the level of minimum respiratory system elastance (Ers), obtained during a decremental PEEP trial subsequent to a recruitment maneuver, and 2 cmH2O above or below of this level. Measurements and Main Results Ers, gas exchange and hemodynamic variables were measured. Cytokines were determined in lung homogenate and plasma samples and left lung was used for histologic analysis and diffuse alveolar damage scoring. A progressive time-dependent increase in Ers was observed independent on ventilatory mode or PEEP level. Despite of that, the rate of increase of Ers and lung tissue IL-1 beta concentration were significantly lower in VV than in VCV at the level of the PEEP of minimum Ers. A significant increase in lung tissue cytokines (IL-6, IL-1 beta, CINC-1 and TNF-alpha) as well as a ventral to dorsal and cranial to caudal reduction in aeration was observed in all ventilated rats with no significant differences among groups. Conclusions VV combined with PEEP adjusted at the level of the PEEP of minimal Ers seemed to better prevent anesthesia-induced atelectasis and might improve lung protection throughout general anesthesia.
    PLoS ONE 11/2014; 9(11):e110817. DOI:10.1371/journal.pone.0110817 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary function and reduces systemic inflammatory response. However, it is currently not known whether patients undergoing open abdominal surgery might benefit from intraoperative variable ventilation.
    Trials 05/2014; 15(1):155. DOI:10.1186/1745-6215-15-155 · 2.12 Impact Factor