Article

CDDO-imidazolide induces DNA damage, G2/M arrest and apoptosis in BRCA1-mutated breast cancer cells.

Department of Pharmacology, Dartmouth Medical School, Hanover, NH, USA.
Cancer Prevention Research (Impact Factor: 4.89). 03/2011; 4(3):425-34. DOI: 10.1158/1940-6207.CAPR-10-0153
Source: PubMed

ABSTRACT Breast cancer-associated gene 1 (BRCA1) protein plays important roles in DNA damage and repair, homologous recombination, cell-cycle regulation, and apoptosis. The synthetic triterpenoid 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Imidazolide, CDDO-Im) is a promising anticancer and chemopreventive agent with potent antiproliferative and apoptotic activities against a wide variety of cancer types. However, the mechanisms responsible for the selective apoptotic effects of CDDO-Im in cancer cells remain elusive. In the present work, CDDO-Im induced G2/M arrest and apoptosis in BRCA1-mutated mammary tumor cell lines. Prior to the induction of apoptosis, CDDO-Im induced DNA damage and the phosphorylation of H2AX followed by activation of the DNA damage response. Moreover, CDDO-Im also induced the generation of reactive oxygen species (ROS), which is associated with the induction of DNA damage, in both mouse and human tumor cells containing a BRCA1 mutation. The inhibition of ROS generation by uric acid prevented the induction of DNA damage by CDDO-Im. Furthermore, treatment with CDDO-Im did not induce ROS in nonmalignant MCF-10A breast epithelial cells or in E18-14C-27 breast cancer cells with wild-type BRCA1 genes and was not cytotoxic to normal mouse 3T3 fibroblasts, highlighting a selective therapeutic potential of CDDO-Im for BRCA1-associated breast cancer cells. Altogether, our results show that CDDO-Im induces ROS and subsequent DNA damage, thereby facilitating the activation of the DNA damage checkpoint, G2/M arrest, and finally apoptosis in BRCA1-mutated cancer cells. The particular relevance of these findings to the chemoprevention of cancer is discussed. Cancer Prev Res; 4(3); 425-34. ©2011 AACR.

0 Bookmarks
 · 
135 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-oxidant capacity is crucial defence against environmental or endogenous oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that plays a key defensive role against oxidative and cytotoxic stress and cellular senescence. However, Nrf2 signalling is impaired in several aging-related diseases, such as chronic pulmonary obstructive disease (COPD), cancer, and neurodegenerative diseases. Thus, novel therapeutics that enhance Nrf2 signalling are an attractive approach to treat these diseases. Nrf2 was stabilized by SKI-II (2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole), which is a known sphingosine kinase inhibitor, in human bronchial epithelial cell line, BEAS2B, and in primary human bronchial epithelial cells, leading to enhancement of anti-oxidant proteins, such as HO-1, NQO1 and GCLM. The activation of Nrf2 was achieved by the generation of inactive dimerized form of Keap1, a negative regulator of Nrf2 expression, which was independent of sphingosine kinase inhibition. Using mice that were exposed to cigarette smoke, SKI-II induced Nrf2 expression together with HO-1 in their lungs. In addition, SKI-II reduced cigarette smoke mediated oxidative stress, macrophages and neutrophil infiltration and markers of inflammation in mice. SKI-II appears to be a novel activator of Nrf2 signalling via the inactivation of Keap1.
    PLoS ONE 02/2014; 9(2):e88168. DOI:10.1371/journal.pone.0088168 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Triple-negative breast cancer is associated with poor prognosis because of a high rate of tumor recurrence and metastasis. Previous studies demonstrated that the synthetic triterpenoid, CDDO-Imidazolide (CDDO-Im) induced cell cycle arrest and apoptosis in triple-negative breast cancer. Since a small subpopulation of cancer stem cells has been suggested to be responsible for drug resistance and metastasis of tumors, our present study determined whether the effects of CDDO-Im in triple-negative breast cancer are due to the inhibition of a cancer stem cell subpopulation. CDDO-Im treatment markedly induced cell cycle arrest at G2/M-phase and apoptosis in the triple-negative breast cancer cell lines, SUM159 and MDA-MB-231. Because SUM159 cells were more sensitive to CDDO-Im than MDA-MB-231 cells, the effects of CDDO-Im on the cancer stem cell subpopulation were further investigated in SUM159 cells. SUM159 cells formed tumorspheres in culture, and the cancer stem cell subpopulation, CD24-/EpCAM+ cells, was markedly enriched in SUM159 tumorspheres. The CD24-/EpCAM+ cells in SUM159 tumorspheres were significantly inhibited by CDDO-Im treatment. CDDO-Im also significantly decreased sphere forming efficiency and tumorsphere size in both primary and secondary sphere cultures. PCR array of stem cell signaling genes showed that expression levels of many key molecules in the stem cell signaling pathways, such as Notch, TGF-β/Smad, Hedgehog and Wnt, were significantly down-regulated by CDDO-Im in SUM159 tumorspheres. Protein levels of Notch receptors (c-Notch1, Notch1 and Notch3), TGF-β/Smad (pSmad2/3) and Hedgehog downstream effectors (GLI1) also were markedly reduced by CDDO-Im. In conclusion, the present study demonstrates that the synthetic triterpenoid, CDDO-Im, is a potent anti-cancer agent against triple-negative breast cancer cells by targeting the cancer stem cell subpopulation.
    PLoS ONE 09/2014; 9(9):e107616. DOI:10.1371/journal.pone.0107616 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synthetic oleanane triterpenoids are multifunctional drugs being developed for the prevention and treatment of a variety of chronic diseases driven by inflammation and oxidative stress. Low nanomolar concentrations of triterpenoids inhibit the induction of inflammatory cytokines, and these drugs are potent activators of the Nrf2 cytoprotective pathway. In contrast, low micromolar concentrations of triterpenoids increased the production of ROS and induced apoptosis in a dose-dependent manner in malignant MCF10 CA1a breast cancer cells. Because cancer cells respond differently to ROS than normal cells, it should be possible to exploit these differences therapeutically. In an experimental model of lung cancer, the triterpenoids activated the Nrf2 pathway, as seen by induction of the cytoprotective enzyme NQO1, and reduced the toxicity of carboplatin and paclitaxel. The induction of the Nrf2 pathway in the lung did not suppress the efficacy of treatment with carboplatin and paclitaxel, as the average tumor burden in the group treated with the combination of CDDO-Me and carboplatin/paclitaxel decreased by 90% (P < 0.05 vs. the controls and both single treatment groups). Understanding the dose response of triterpenoids and related drugs will help provide the proper context for optimizing their potential clinical utility.
    Dose-Response 01/2014; 12(1):136-51. DOI:10.2203/dose-response.13-018.Liby · 1.23 Impact Factor

Full-text (2 Sources)

Download
6 Downloads
Available from
Jul 25, 2014