Abstract 2509: CDDO-Im induces DNA damage, G2/M arrest and apoptosis in BRCA1-mutated breast cancer cells

Department of Pharmacology, Dartmouth Medical School, Hanover, NH, USA.
Cancer Prevention Research (Impact Factor: 5.27). 03/2011; 4(3):425-34. DOI: 10.1158/1940-6207.CAPR-10-0153
Source: PubMed

ABSTRACT Breast cancer-associated gene 1 (BRCA1) protein plays important roles in DNA damage and repair, homologous recombination, cell-cycle regulation, and apoptosis. The synthetic triterpenoid 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Imidazolide, CDDO-Im) is a promising anticancer and chemopreventive agent with potent antiproliferative and apoptotic activities against a wide variety of cancer types. However, the mechanisms responsible for the selective apoptotic effects of CDDO-Im in cancer cells remain elusive. In the present work, CDDO-Im induced G2/M arrest and apoptosis in BRCA1-mutated mammary tumor cell lines. Prior to the induction of apoptosis, CDDO-Im induced DNA damage and the phosphorylation of H2AX followed by activation of the DNA damage response. Moreover, CDDO-Im also induced the generation of reactive oxygen species (ROS), which is associated with the induction of DNA damage, in both mouse and human tumor cells containing a BRCA1 mutation. The inhibition of ROS generation by uric acid prevented the induction of DNA damage by CDDO-Im. Furthermore, treatment with CDDO-Im did not induce ROS in nonmalignant MCF-10A breast epithelial cells or in E18-14C-27 breast cancer cells with wild-type BRCA1 genes and was not cytotoxic to normal mouse 3T3 fibroblasts, highlighting a selective therapeutic potential of CDDO-Im for BRCA1-associated breast cancer cells. Altogether, our results show that CDDO-Im induces ROS and subsequent DNA damage, thereby facilitating the activation of the DNA damage checkpoint, G2/M arrest, and finally apoptosis in BRCA1-mutated cancer cells. The particular relevance of these findings to the chemoprevention of cancer is discussed. Cancer Prev Res; 4(3); 425-34. ©2011 AACR.

Download full-text


Available from: Karen T Liby, Jul 25, 2014
  • Source
    • "CDDO was shown to inhibit proliferation and induce peroxisome proliferator-activated receptor-c (PPAR-c) in human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer cells [29] [30]. CDDO-Im induced apoptosis in estrogen receptor negative and BRCA1 null breast cancer cells, by inducing reactive oxygen species (ROS), and subsequently DNA damage [31] [32]. In another study, CDDO-Im in combination with Gemini vitamin D analog, ABXL0124, potently inhibited HER2 or ErbB2 overexpressing breast cancer cells and repressed downstream signaling proteins, such as pErk1/2, pAKT, c- Myc, cyclin D1 and Bcl-2 [33]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Oleanolic acid (OA, 3β-hydroxyolean-12-en-28-oic acid) is a ubiquitous pentacyclic multifunctional triterpenoid, widely found in several dietary and medicinal plants. Natural and synthetic OA derivatives can modulate multiple signaling pathways including nuclear factor-κB, AKT, signal transducer and activator of transcription 3, mammalian target of rapamycin, caspases, intercellular adhesion molecule 1, vascular endothelial growth factor, and poly (ADP-ribose) polymerase in a variety of tumor cells. Importantly, synthetic derivative of OA, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO), and its C-28 methyl ester (CDDO-Me) and C28 imidazole (CDDO-Im) have demonstrated potent antiangiogenic and antitumor activities in rodent cancer models. These agents are presently under evaluation in phase I studies in cancer patients. This review summarizes the diverse molecular targets of OA and its derivatives and also provides clear evidence on their promising potential in preclinical and clinical situations.
    Cancer letters 05/2014; 346(2):206-216. DOI:10.1016/j.canlet.2014.01.016 · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The breast cancer-associated gene 1 (BRCA1) is the most frequently mutated tumor suppressor gene in familial breast cancers. Mutations in BRCA1 also predispose to other types of cancers, pointing to a fundamental role of this pathway in tumor suppression and emphasizing the need for effective chemoprevention in these high-risk patients. Because the methyl ester of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-Me) is a potent chemopreventive agent, we tested its efficacy in a highly relevant mouse model of BRCA1-mutated breast cancer. Beginning at 12 weeks of age, Brca1(Co/Co); MMTV-Cre;p53(+/-) mice were fed powdered control diet or diet containing CDDO-Me (50 mg/kg diet). CDDO-Me significantly (P < 0.05) delayed tumor development in the Brca1-mutated mice by an average of 5.2 weeks. We also observed that levels of ErbB2, p-ErbB2, and cyclin D1 increased in a time-dependent manner in the mammary glands in Brca1-deficient mice, and CDDO-Me inhibited the constitutive phosphorylation of ErbB2 in tumor tissues from these mice. In BRCA1-deficient cell lines, the triterpenoids directly interacted with ErbB2, decreased constitutive phosphorylation of ErbB2, inhibited proliferation, and induced G(0)-G(1) arrest. These results suggest that CDDO-Me has the potential to prevent BRCA1-mutated breast cancer.
    Cancer Prevention Research 09/2011; 5(1):89-97. DOI:10.1158/1940-6207.CAPR-11-0359 · 5.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The alkylating agent temozolomide (TMZ) is the major chemotherapeutic drug used clinically in the treatment of malignant gliomas. This study investigated the mechanism behind TMZ-induced cell death and the possibility that resveratrol might increase TMZ efficacy. TMZ induced both apoptotic cell death and cytoprotective autophagy through a reactive oxygen species (ROS) burst and extracellular signal-regulated kinase (ERK) activation, which was suppressed by resveratrol, resulting in a decrease in autophagy and an increase in apoptosis, suggesting that the ROS/ERK pathway plays a crucial role in the fate of cells after TMZ treatment. Isobolographic analysis indicated that the combination of TMZ and resveratrol has a synergistic effect. Moreover, an in vivo mouse xenograft study also showed that coadministration of resveratrol and TMZ reduced tumor volumes by suppressing ROS/ERK-mediated autophagy and subsequently inducing apoptosis. Taken together, our data indicate that TMZ-induced ROS/ERK-mediated autophagy protected glioma cells from apoptosis, and the combination of resveratrol with TMZ could improve the efficacy of chemotherapy for brain tumors.
    Free Radical Biology and Medicine 11/2011; 52(2):377-91. DOI:10.1016/j.freeradbiomed.2011.10.487 · 5.71 Impact Factor
Show more