Article

p62/SQSTM1 involved in cisplatin resistance in human ovarian cancer cells by clearing ubiquitinated proteins.

Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, PR China.
European journal of cancer (Oxford, England: 1990) (Impact Factor: 4.12). 03/2011; 47(10):1585-94. DOI:10.1016/j.ejca.2011.01.019
Source: PubMed

ABSTRACT Mechanisms of cisplatin resistance in cancer cells are not fully understood. Here, we show a critical role for the ubiquitin-binding protein p62/SQSTM1 in cisplatin resistance in human ovarian cancer cells (HOCCs). Specifically, we found that cisplatin-resistant SKOV3/DDP cells express much higher levels of p62 than do cisplatin-sensitive SKOV3 cells. The protein p62 binds ubiquitinated proteins for transport to autophagic degradation, reducing apoptosis induced by endoplasmic reticulum (ER) stress in SKOV3/DDP cells. Knockdown of p62 or inhibition of autophagy using 3-methyladenine resensitises SKOV3/DDP cells to cisplatin. Collectively, our data indicate that p62 acts as a receptor or adaptor for autophagic degradation of ubiquitinated proteins, and plays an important role in preventing ER stress-induced apoptosis, leading to cisplatin resistance in HOCCs.

0 0
 · 
0 Bookmarks
 · 
145 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Compelling evidence suggests that epithelial-to-mesenchymal transition is involved in the resistance of human cancer cells to chemotherapy. We previously reported that the expression of miR-205, a miRNA down-regulated in prostate cancer, is further repressed in prostate cancer cells undergoing epithelial-to-mesenchymal transition, suggesting a possible involvement of the miRNA in the acquisition of the chemoresistant phenotype. In the present study, we show that miR-205 replacement in castration-resistant mesenchymal prostate cancer cells caused an enhancement of cisplatin cytotoxic activity in vitro and in vivo, as a consequence of autophagy impairment. Specifically, the constraints on the autophagic flux were associated to the miRNA-dependent down-regulation of the lysosome-associated proteins RAB27A and LAMP3. These findings suggest that miR-205-mediated impairment of the autophagic pathway may interfere with the detoxifying capabilities of prostate cancer cells in their attempt to cope with cisplatin-induced detrimental effects. Overall, our data indicate that i) loss of miR-205 may indeed contribute to acquire mesenchymal tracts and concomitantly establish a permissive autophagic milieu that confers a chemotherapy resistant phenotype to prostate cancer cells, and ii) strategies aimed at restoring miR-205 expression levels may represent a successful approach to overcome resistance of prostate cancer to platinum compounds.
    Biochemical pharmacology 12/2013; · 4.25 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Heat shock protein 90 (Hsp90) has an important role in many cancers. Biochemical inhibitors of Hsp90 are in advanced clinical development for the treatment of solid and hematological malignancies. At the cellular level, their efficacy is diminished by the fact that Hsp90 inhibition causes activation of heat shock factor 1 (HSF1). We report a mechanism by which HSF1 activation diminishes the effect of Hsp90 inhibitors geldanamycin and 17-allylaminogeldanamycin (17-AAG, tanespimycin). Silencing HSF1 with siRNA or inhibiting HSF1 activity with KRIBB11 lowers the threshold for apoptosis in geldanamycin and 17-AAG-treated cancer cells. Autophagy also mitigates the actions of Hsp90 inhibitors. Blocking autophagy with 3-methyladenine (3-MA), bafilomycin A1, or beclin 1 siRNA also lower the threshold forapoptosis. Exploring a potential relationship between HSF1 and autophagy, we monitored autophagosome formation and autophagic flux in control and HSF1-silenced cells. Results show HSF1 is required for autophagy in Hsp90 inhibitor-treated cells. The reduction in autophagy in observed HSF1-silenced cells correlates with enhanced cell death. We monitored the expression of genes involved in the autophagic cascade, showing HSF1 promotes autophagy. Sequestosome 1 (p62/SQSTM1), a protein involved in the delivery of autophagic substrates and nucleation of autophagosomes, is an HSF1-regulated gene. Gene silencing was used to evaluate the significance of p62/SQSTM1 in Hsp90 inhibitor resistance. Cells where p62/SQSTM1 was silenced showed a dramatic increase in sensitivity to Hsp90 inhibitors. Results highlight importance of HSF1 and HSF1-dependent p62/SQSTM1 expression in resistance Hsp90 inhibitors, revealing the potential of targeting HSF1 to improve the efficacy of Hsp90 inhibitors in cancer.
    Biochemical pharmacology 11/2013; · 4.25 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: High expression of Ankyrin Repeat Domain 1 (ANKRD1) in ovarian carcinoma is associated with poor survival, and in ovarian cancer cell lines is associated with platinum resistance. Importantly, decreasing ANKRD1 expression using siRNA increases cisplatin sensitivity. In this study, we investigated possible mechanisms underlying the association of ANKRD1 with cisplatin response. We first demonstrated that cisplatin-induced apoptosis in ovarian cancer cell lines was associated with endoplasmic reticulum (ER) stress, evidenced by induction of Glucose-Regulated Protein 78 (GRP78), growth arrest- and DNA damage-inducible gene 153 (GADD153) and increased intracellular Ca(2+) release. The level of sensitivity to cisplatin-induced apoptosis was associated with ANKRD1 protein levels and poly (ADP-ribose) polymerase (PARP) cleavage. COLO 316 ovarian cancer cells, which express high ANKRD1 levels, were relatively resistant to cisplatin, and ER stress-induced apoptosis, whereas OAW42 and PEO14 cells, which express lower ANKRD1 levels, are more sensitive to ER stress-induced apoptosis. Furthermore, we show that overexpression of ANKRD1 attenuated cisplatin-induced cytotoxicity, and conversely siRNA knockdown of ANKRD1 sensitized ovarian cancer cells to cisplatin and ER stress-induced apoptosis associated with induction of GADD153, and downregulation of BCL2 and BCL-XL. Taken together, these results suggest that ANKRD1 has a significant role in the regulation of apoptosis in human ovarian cancer cells, and is a potential molecular target to enhance sensitivity of ovarian cancer to chemotherapy.Oncogene advance online publication, 17 February 2014; doi:10.1038/onc.2013.566.
    Oncogene 02/2014; · 7.36 Impact Factor