Determination of 17q Gain in Patients With Neuroblastoma by Analysis of Circulating DNA

Centre Léon Bérard, Laboratoire de Recherche Translationnelle, Lyon Cedex, France.
Pediatric Blood & Cancer (Impact Factor: 2.56). 05/2011; 56(5):757-61. DOI: 10.1002/pbc.22816
Source: PubMed

ABSTRACT Retrospective studies have demonstrated the prognostic impact of genomic profiles in neuroblastoma (NB). Segmental chromosome alterations have been found useful for identifying tumors with a high risk of relapse. As the gain of chromosome arm 17q is the most frequent chromosome alteration reported in NB primary tumors, we evaluated the presence of this 17q gain in the peripheral blood of patients with NB.
Using duplex quantitative real-time PCR, we quantified simultaneously MPO (17q.23.1) and a reference gene, p53, and Survivin (17q25) and p53. MPO and Survivin copy numbers were evaluated as MPO/p53 and Survivin/p53 ratios in 142 serum or plasma samples in which 17q status had been determined by array-based comparative genomic hybridization (aCGH) or multiplex ligation-dependent probe amplification (MLPA).
In patients <18 months of age, serum-based determination of 17q gain in DNA sequences had good specificity (94.4%) and 58.8% sensitivity (P < 0.001). In contrast, for patients over 18 months of age, the approach exhibited moderate specificity (71.4%) and 51.2% sensitivity (P = ns). Similar results were observed in patients with tumors without MYCN amplification.
Our results show that 17q gain determination in circulating DNA is possible and suggest that this non-invasive test could be useful for very young children when no reliable information on genomic alterations is obtained by aCGH or MPLA analysis of tumor samples This test is complementary to previously developed techniques for detecting circulating MYCN DNA sequences.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New protocols based on ALK-targeted therapy by crizotinib or other ALK-targeting molecules have opened for the treatment of patients with neuroblastoma (NB) if their tumors showed mutation and/or amplification of the ALK gene. However, tumor samples are not always available for analysis of ALK mutational status in particular at relapse. Here, we evaluated the ALK mutational status of NB samples by analysis of circulating DNA, using the droplet digital PCR (ddPCR) system. ddPCR assays was developed for the detection of ALK mutations at F1174 and R1275 hotspots found in NB tumors and was applied for the analysis of circulating DNA obtained from 200 μL of serum or plasma samples collected from 114 patients with NB. The mutations F1174L (exon 23 position 3520, T>C and position 3522, C>A) and the mutation R1275Q (exon 25 position 3824, G>A) were detected in circulating DNA. The sensitivity of our test was 100%, 85%, and 92%, respectively, and the specificity was 100%, 91%, and 98%, respectively. In conclusion, the assay that we have developed offers a reliable, noninvasive blood test to assess ALK mutational status at F1174 and R1275 hotspots and should help clinicians to identify patients showing an ALK mutation in particular when no tumor tissue is available.
    Cancer Medicine 02/2015; DOI:10.1002/cam4.414
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute lymphoblastic leukemia (ALL) is a heterogeneous cancer characterized by abnormal accumulation of immature blasts in the bone marrow. Glucocorticoids such as prednisolone (PRED) have been widely used in the treatment of pediatric ALL and the resistance to PRED is associated with unfavorable outcome in patients. We have identified BIM to be an important regulator of PRED-induced apoptosis, and its expression level may have prognostic value. By understanding the molecular basis of PRED-induced apoptosis, we hope that improved treatment strategies can be defined.
    Pediatric Cancer, Volume 4, Edited by M.A. Hayat, 01/2013: chapter Pediatric Acute Lymphoblastic Leukemia: Role of BIM Protein in Prednisolone-Induced Apoptosis: pages 113-120; Springer Netherlands., ISBN: 978-94-007-6591-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are deregulated in a variety of human cancers, including neuroblastoma, the most common extracranial tumor of childhood. We previously reported a signature of 42 miRNAs to be highly predictive of neuroblastoma outcome. One miRNA in this signature, miR-542, was downregulated in tumors from patients with adverse outcome. Re-analysis of quantitative PCR and next-generation sequencing transcript data revealed that miR-542-5p as well as miR-542-3p expression is inversely correlated with poor prognosis in neuroblastoma patients. We, therefore, analyzed the function of miR-542 in neuroblastoma tumor biology. Ectopic expression of miR-542-3p in neuroblastoma cell lines reduced cell viability and proliferation, induced apoptosis and downregulated Survivin. Survivin expression was also inversely correlated with miR-542-3p expression in primary neuroblastomas. Reporter assays confirmed that miR-542-3p directly targeted Survivin. Downregulating Survivin using siRNA copied the phenotype of miR-542-3p expression in neuroblastoma cell lines, while cDNA-mediated ectopic expression of Survivin partially rescued the phenotype induced by miR-542-3p expression. Treating nude mice bearing neuroblastoma xenografts with miR-542-3p-loaded nanoparticles repressed Survivin expression, decreased cell proliferation and induced apoptosis in the respective xenograft tumors. We conclude that miR-542-3p exerts its tumor suppressive function in neuroblastoma, at least in part, by targeting Survivin. Expression of miR-542-3p could be a promising therapeutic strategy for treating aggressive neuroblastoma. © 2014 Wiley Periodicals, Inc.
    International Journal of Cancer 03/2015; 136(6). DOI:10.1002/ijc.29091 · 5.01 Impact Factor