Disc1 point mutations in mice affect development of the cerebral cortex.

Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8.
Journal of Neuroscience (Impact Factor: 6.91). 03/2011; 31(9):3197-206. DOI: 10.1523/JNEUROSCI.4219-10.2011
Source: PubMed

ABSTRACT Disrupted-in-Schizophrenia 1 (DISC1) is a strong candidate gene for schizophrenia and other mental disorders. DISC1 regulates neurodevelopmental processes including neurogenesis, neuronal migration, neurite outgrowth, and neurotransmitter signaling. Abnormal neuronal morphology and cortical architecture are seen in human postmortem brain from patients with schizophrenia. However, the etiology and development of these histological abnormalities remain unclear. We analyzed the histology of two Disc1 mutant mice with point mutations (Q31L and L100P) and found a relative reduction in neuron number, decreased neurogenesis, and altered neuron distribution compared to wild-type littermates. Frontal cortical neurons have shorter dendrites and decreased surface area and spine density. Overall, the histology of Disc1 mutant mouse cortex is reminiscent of the findings in schizophrenia. These results provide further evidence that Disc1 participates in cortical development, including neurogenesis and neuron migration.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Drug discovery in psychiatry has been limited to chemical modifications of compounds originally discovered serendipitously. Therefore, more mechanism-oriented strategies of drug discovery for mental disorders are awaited. Schizophrenia is a devastating mental disorder with synaptic disconnectivity involved in its pathophysiology. Reduction in the dendritic spine density is a major alteration that has been reproducibly reported in the cerebral cortex of patients with schizophrenia. Disrupted-in-Schizophrenia-1 (DISC1), a factor that influences endophenotypes underlying schizophrenia and several other neuropsychiatric disorders, has a regulatory role in the postsynaptic density in association with the NMDA-type glutamate receptor, Kalirin-7, and Rac1. Prolonged knockdown of DISC1 leads to synaptic deterioration, reminiscent of the synaptic pathology of schizophrenia. Thus, we tested the effects of novel inhibitors to p21-activated kinases (PAKs), major targets of Rac1, on synaptic deterioration elicited by knockdown expression of DISC1. These compounds not only significantly ameliorated the synaptic deterioration triggered by DISC1 knockdown but also partially reversed the size of deteriorated synapses in culture. One of these PAK inhibitors prevented progressive synaptic deterioration in adolescence as shown by in vivo two-photon imaging and ameliorated a behavioral deficit in prepulse inhibition in adulthood in a DISC1 knockdown mouse model. The efficacy of PAK inhibitors may have implications in drug discovery for schizophrenia and related neuropsychiatric disorders in general.
    Proceedings of the National Academy of Sciences 04/2014; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mouse models carrying Disc1 mutations may provide insights into how Disc1 genetic variations contribute to schizophrenia (SZ) susceptibility. Disc1 mutant mice show behavioral and cognitive disturbances reminiscent of SZ. To dissect the synaptic mechanisms underlying these phenotypes, we examined electrophysiological properties of cortical neurons from two mouse models, the first expressing a truncated mouse Disc1 (mDisc1) protein throughout the entire brain, and the second expressing a truncated human Disc1 (hDisc1) protein in forebrain regions. We obtained whole-cell patch clamp recordings to examine how altered expression of Disc1 protein changes excitatory and inhibitory synaptic transmissions onto cortical pyramidal neurons in the medial prefrontal cortex in 4-7month-old mDisc1 and hDisc1 mice. In both mDisc1 and hDisc1 mice, the frequency of spontaneous EPSCs was greater than in wild-type littermate controls. Male mice from both lines were more affected by the Disc1 mutation than were females, exhibiting increases in the ratio of excitatory to inhibitory events. Changes in spontaneous IPSCs were only observed in the mDisc1 model and were sex-specific, with diminished cortical GABAergic neurotransmission, a well-documented characteristic of SZ, occurring only in male mDisc1 mice. In contrast, female mDisc1 mice showed an increase in the frequency of small-amplitude sIPSCs. These findings indicate that truncations of Disc1 alter glutamatergic and GABAergic neurotransmission both commonly and differently in the models and some of the effects are sex-specific, revealing how altered Disc1 expression may contribute to behavioral disruptions and cognitive deficits of SZ.
    Schizophrenia Research 03/2013; · 4.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Interneuron deficits are one of the most consistent findings in post-mortem studies of schizophrenia patients and are likely important in the cognitive deficits associated with schizophrenia. Disrupted-in-Schizophrenia 1 (DISC1), a strong susceptibility gene for schizophrenia and other mental illnesses, is involved in neurodevelopment, including that of interneurons. However, the mechanism by which DISC1 regulates interneuron development remains unknown. In this study, we analyzed interneuron histology in the Disc1-L100P single point mutation mouse, that was previously shown to have behavioral abnormalities and cortical developmental defects related to schizophrenia. RESULTS: We sought to determine whether a Disc1-L100P point mutation in the mouse would alter interneuron density and location. First, we examined interneuron position in the developing mouse cortex during embryonic days 14--16 as an indicator of interneuron tangential migration, and found striking migration deficits in Disc1-L100P mutants. Further analysis of adult brains revealed that the Disc1-L100P mutants have selective alterations of calbindin- and parvalbumin-expressing interneurons in the cortex and hippocampus, decreased GAD67/PV co-localization and mis-positioned interneurons across the neocortex when compared to wild-type littermates. CONCLUSION: Our results are consistent with the anomalies seen in post-mortem schizophrenia studies and other Disc1 mutant mouse models. Future research is required to determine the specific mechanisms underlying these cellular deficits. Overall, these findings provide further evidence that DISC1 participates in interneuron development and add to our understanding of how DISC1 variants can affect susceptibility to psychiatric illness.
    Molecular Brain 04/2013; 6(1):20. · 4.20 Impact Factor